K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

gọi 2 số là: a,b 
từ giả thiết ta có: 
20(a+b)= 140(a-b)= 7ab 
+) 20(a+b)=140(a-b) tương đương với: 3a=4b suy ra a=4/3b 
Thay vào : 20(a+b)= 7ab ta được phương trình: 
20*( 4/3b+b)= 7*4/3b*b tưong đuơng 20*7/3b=7*4/3b^2 
tương đương với: b^2 - 5b=0 tương đương với: b=0 hoặc b=5 

13 tháng 8 2016

 Gọi a,b là 2 số cần tìm(a>b>0 và a,b thuộc Z) 
Theo đề:a+b,a-b,ab tỉ lệ nghịch với 20,140,7 
<=>20(a+b)=140(a-b)(1) và 140(a-b)=7ab (2) 
Ta có: 
(1)<=>20b+140b=140a-20a 
<=>160b=120a 
=>a=4/3.b thế vào (2) đc: 
140(4/3b-b)=7.(4/3 b)b 
<=>140/3.b=28/3.b² 
<=>b=(140/3):(28/3)=5 
=>a=4/3.5=20/3(loại vì a thuộc Z) 

17 tháng 1 2015

Ta có: 15(x+y) = 60(x-y)=8(xy)

=>      15(x+y) = 60(x-y)  

=>      15x+15y = 60x-60y

 =>         75y     =   45x                   =>   x= 75y/3  =5y/3              (1)

và 60 (x-y) =  8(xy)

=>60 ((5y/3)-y) = 8((5y/3)*y)

=>60 (2y/3)  =  8 ((5y^2/3))

=>120y/3    =    40y^2/3

=> (120y/3) - (40y^2/3) = 0      =>  y=3

Thay vào ( 1 )  => x= 5y/3 = 5*3/3 =5

Vậy x=5, y=3

Chắc luôn đó mình thử lại rồi!

2 tháng 1 2017

con cach ngan hon ko

27 tháng 3 2020

2.Gọi hai số dương lần lượt là x và y

Theo đề bài ta có : \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\)

hay \(35\left(x+y\right)=210\left(x-y\right)=12\left(x\cdot y\right)\)

Mà \(BCNN\left(35,210,12\right)=420\)

=> \(\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12\left(x\cdot y\right)}{420}\)

=> \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{x\cdot y}{35}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

+)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\)(1)

+) \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\)(2)

=> Từ (1) và (2) => \(\frac{x}{7}=\frac{y}{5}\)

Đặt \(\frac{x}{7}=\frac{y}{5}=k\Rightarrow\orbr{\begin{cases}x=7k\\y=5k\end{cases}}\)

=> \(xy=7k\cdot5k=35k^2\)

=> \(35k^2=35\)

=> \(k^2=1\)

=> k = 1(loại âm vì đề bài cho 2 số dương)

Do đó : \(\frac{x}{7}=1\Rightarrow x=7\)

\(\frac{y}{5}=1\)=> \(y=5\)

Vậy x = 7,y = 5

27 tháng 3 2020

1. Câu hỏi của I will shine on the sky - Toán lớp 7 - Học toán với OnlineMath

18 tháng 5 2016

gọi 2 số là: a,b 
từ giả thiết ta có: 
20(a+b)= 140(a-b)= 7ab 
+) 20(a+b)=140(a-b) tương đương với: 3a=4b suy ra a=4/3b 
Thay vào : 20(a+b)= 7ab ta được phương trình: 
20*( 4/3b+b)= 7*4/3b*b tưong đuơng 20*7/3b=7*4/3b^2 
tương đương với: b^2 - 5b=0 tương đương với: b=0 hoặc b=5 
suy ra a=....

24 tháng 8 2018

ko bik

4 tháng 11 2016

Gọi hai số đó là : \(x\)\(y\)

Theo đề bài , ta có :

\(35.\left(x+y\right)=210\left(x-y\right)=12\left(xy\right)\)

\(\Rightarrow35.\left(x+y\right)=210.\left(x-y\right)\) \(\left(1\right)\)

\(210.\left(x-y\right)=12\left(xy\right)\) \(\left(2\right)\)

Từ \(\left(1\right)\Rightarrow35x+35y=210x-210y\)

 

\(\Rightarrow35y+210y=210x-35x\)

\(\Rightarrow245y=175x\)

\(\Rightarrow x=\frac{\left(245y\right)}{175}=\frac{\left(7y\right)}{5}\) \(\left(3\right)\)

Thay vào \(\left(2\right)\) , ta được :

\(210.\left(x-y\right)=12\left(xy\right)\)

\(\Rightarrow210.\left[\frac{\left(7y\right)}{5-y}\right]=12.\left[\frac{7y}{5y}\right]\)

\(\Rightarrow210.\left[\frac{\left(2y\right)}{5}\right]=\left[\frac{\left(84y\right)}{5}\right].y\)

\(\Rightarrow\frac{\left(420y\right)}{5}=\frac{84y^2}{5}\)

\(\Rightarrow\left[\frac{\left(420y\right)}{5}\right]-\left[\frac{84y^2}{5}\right]=0\)

\(\Rightarrow\frac{\left[84.\left(5-y\right)\right]}{5}=0\)

\(\Rightarrow y=0\) ( vô lí )

\(\Rightarrow5-y=0\)

\(\Rightarrow y=5\)

Thay vào \(\left(3\right)\) , ta có :

\(x=\frac{\left(7y\right)}{5}=\frac{\left(7.5\right)}{5}=\frac{37}{5}=7\)

Vậy \(x=7;y=5\)

21 tháng 12 2016

sai một lỗi