Cho \(\Delta MNP\) vuông tại \(M\). Biết \(MN=5cm;MP=4cm\). Vẽ trung tuyến \(PK\left(K\in MN\right)\), trên tia đối của tia \(PK\) lấy điểm \(H\) sao cho KH=KP. Chứng minh PN > PK
các cậu cứu tớ đê, mai tớ kiểm tra toán cuối kì òi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\Delta{MNP}=\Delta{DEF}\)
\( \Rightarrow DE = MN;EF = NP;DF = MP\) (các cạnh tương ứng)
\( \Rightarrow NP = 6cm\)
\( \Rightarrow \) Chu vi tam giác MNP là:
C = MN + MP + NP = 4 + 5 + 6 = 15 (cm)
Áp dụng định lí Pytago trong △MNP vuông tại P có
NP2 + MP2 = MN2
hay NP2 + 52 = 132
NP2 = 132-52
NP2 = 169-25
NP2 = \(\sqrt{144}\)
NP = 12cm
Vì tam giác MNP vuông tại M, ta có MI là đường cao của tam giác và NP là cạnh huyền.
Theo định lý Pythagoras, trong tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương của hai cạnh góc vuông.
Áp dụng vào tam giác MNP, ta có:
MN^2 + NP^2 = MI^2
5^2 + 13^2 = MI^2
25 + 169 = MI^2
194 = MI^2
Vậy MI = √194 cm.
Để tính NI, ta sử dụng định lý Pythagoras trong tam giác vuông MNI:
NI^2 + MI^2 = MN^2
NI^2 + (√194)^2 = 5^2
NI^2 + 194 = 25
NI^2 = 25 - 194
NI^2 = -169
Vì không thể có số âm trong căn bậc hai, nên không thể tính được giá trị của NI.
Vậy, MI = √194 cm và NI không xác định.
Các tỉ số lượng giác của góc N nhé bạn :< , lúc nãy mình viết nhầm xD
Áp dụng định lí Pytago:
`NP^2=MN^2+MP^2`
`<=> MP=\sqrt(13^2-5^2)=12(cm)`
Các tỉ số lượng giác `\hatN` là:
`sinN=(MP)/(NP)=12/13`
`cosN=(MN)/(NP)=5/13`
`tanN=(MP)/(MN)=12/5`
`cotN=(MN)/(MP)=5/12`
a: Xét ΔMNP vuông tại M có
\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)
\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)
\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)
\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)
a: cos N=1/2
=>góc N=60 độ
góc M=90-60=30 độ
Xét ΔMNP vuông tại P có sin M=PN/NM
=>PN/8=sin30=1/2
=>PN=4cm
=>\(PM=\sqrt{8^2-4^2}=4\sqrt{3}\left(cm\right)\)
b: Xét ΔNMP vuông tại P có sin N=0,6=3/5
=>PM/MN=3/5
=>5/MN=3/5
=>MN=25/3
PN=căn (25/3)^2-5^2=20/3(cm)
Xét ΔNMP vuông tại P có sinN=3/5
nên góc N\(\simeq37^0\)
=>\(\widehat{M}\simeq90^0-37^0=53^0\)
c: Xét ΔMNP vuông tại P có tan N=căn 3
=>PM/PN=căn 3
=>6/PN=căn 3
=>PN=2*căn 3(cm)
MN=căn (2*căn 3)^2+6^2=4*căn 3
Xét ΔMNP vuông tại P có tan N=căn 3
nên góc N=60 độ
=>góc M=30 độ
b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:
\(MH\cdot MD=MP^2\left(1\right)\)
Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(PH\cdot PN=MP^2\left(2\right)\)
Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)
a: NP^2=MN^2+MP^2
=>ΔMNP vuông tại M
b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
góc MND=góc END
=>ΔNMD=ΔNED
=>DM=DE
N M P 9 15
Vì \(\Delta MNP\) vuông tại M nên nên theo định lý Pytago, ta có :
MP2 + MN2 = NP2
=> MP2 = NP2 - MN2 = 152 - 92 = 144 = 122
=> MP = 12 cm
Vì tam giác MNP vuông tại M
Áp dụng định lý pytago ta có MN2+ MP2 = NP2
suy ra 81 + MP2 = 225
suy ra MP = 12 (cm) Vì MP >0
Xét \(\Delta MKP\) vuông tại M
\(KP^2=KM^2+PM^2=\left(\frac{5}{2}\right)^2+4^2=22.25\Rightarrow KP=\sqrt{\frac{69}{2}}cm\) (1 )
Xét \(\Delta MNP\) vuông tại M
\(NP^2=MN^2+MP^2=5^2+4^2=\sqrt{41}\) (2)
Từ (1) và (2') => PN > KP
Tớ nghĩ là phải thêm bước \(PK=\sqrt{\frac{69}{2}}=\sqrt{35}cm\)
\(NP=\sqrt{41}cm\)
Ta có: \(\sqrt{41}>\sqrt{35,5}\) nên NP > PK
Cảm ơn cậu nhá