K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét \(\Delta MKP\) vuông tại M

\(KP^2=KM^2+PM^2=\left(\frac{5}{2}\right)^2+4^2=22.25\Rightarrow KP=\sqrt{\frac{69}{2}}cm\) (1 )

Xét \(\Delta MNP\) vuông tại M

\(NP^2=MN^2+MP^2=5^2+4^2=\sqrt{41}\) (2)

Từ (1) và (2') => PN > KP

8 tháng 5 2019

Tớ nghĩ là phải thêm bước \(PK=\sqrt{\frac{69}{2}}=\sqrt{35}cm\)

\(NP=\sqrt{41}cm\)

Ta có: \(\sqrt{41}>\sqrt{35,5}\) nên NP > PK

Cảm ơn cậu nhá hiuhiu

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Vì \(\Delta{MNP}=\Delta{DEF}\) 

\( \Rightarrow DE = MN;EF = NP;DF = MP\) (các cạnh tương ứng)

\( \Rightarrow NP = 6cm\)

\( \Rightarrow \) Chu vi tam giác MNP là:

C = MN + MP + NP = 4 + 5 + 6 = 15 (cm)

19 tháng 12 2021

MP=4cm

\(\widehat{N}=53^0;\widehat{P}=37^0\)

2 tháng 5 2022

Áp dụng định lí Pytago trong △MNP vuông tại P có

NP2 + MP2 = MN2

hay NP2 + 52 = 132

NP2 = 132-52

NP2 = 169-25

NP2 = \(\sqrt{144}\)

NP = 12cm

2 tháng 5 2022

MNP vuông tại P

=> MN là cạnh huyền 

mà MN lại nhỏ hơn cạnh góc vuông ( MN< MP ) ( vô lí)

đề sai

29 tháng 6 2023

 

Vì tam giác MNP vuông tại M, ta có MI là đường cao của tam giác và NP là cạnh huyền.

Theo định lý Pythagoras, trong tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương của hai cạnh góc vuông.

Áp dụng vào tam giác MNP, ta có:

MN^2 + NP^2 = MI^2

5^2 + 13^2 = MI^2

25 + 169 = MI^2

194 = MI^2

Vậy MI = √194 cm.

Để tính NI, ta sử dụng định lý Pythagoras trong tam giác vuông MNI:

NI^2 + MI^2 = MN^2

NI^2 + (√194)^2 = 5^2

NI^2 + 194 = 25

NI^2 = 25 - 194

NI^2 = -169

Vì không thể có số âm trong căn bậc hai, nên không thể tính được giá trị của NI.

Vậy, MI = √194 cm và NI không xác định.

 
23 tháng 7 2021

Các tỉ số lượng giác của góc N nhé bạn :< , lúc nãy mình viết nhầm xD

23 tháng 7 2021

Áp dụng định lí Pytago:

`NP^2=MN^2+MP^2`

`<=> MP=\sqrt(13^2-5^2)=12(cm)`

Các tỉ số lượng giác `\hatN` là:

`sinN=(MP)/(NP)=12/13`

`cosN=(MN)/(NP)=5/13`

`tanN=(MP)/(MN)=12/5`

`cotN=(MN)/(MP)=5/12`

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt 

a: cos N=1/2

=>góc N=60 độ

góc M=90-60=30 độ

Xét ΔMNP vuông tại P có sin M=PN/NM

=>PN/8=sin30=1/2

=>PN=4cm

=>\(PM=\sqrt{8^2-4^2}=4\sqrt{3}\left(cm\right)\)

b: Xét ΔNMP vuông tại P có sin N=0,6=3/5

=>PM/MN=3/5

=>5/MN=3/5

=>MN=25/3

PN=căn (25/3)^2-5^2=20/3(cm)

Xét ΔNMP vuông tại P có sinN=3/5

nên góc N\(\simeq37^0\)

=>\(\widehat{M}\simeq90^0-37^0=53^0\)

c: Xét ΔMNP vuông tại P có tan N=căn 3

=>PM/PN=căn 3

=>6/PN=căn 3

=>PN=2*căn 3(cm)

MN=căn (2*căn 3)^2+6^2=4*căn 3

Xét ΔMNP vuông tại P có tan N=căn 3

nên góc N=60 độ

=>góc M=30 độ

b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:

\(MH\cdot MD=MP^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(PH\cdot PN=MP^2\left(2\right)\)

Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)

a: NP^2=MN^2+MP^2

=>ΔMNP vuông tại M

b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có

ND chung

góc MND=góc END

=>ΔNMD=ΔNED

=>DM=DE

9 tháng 3 2020

N M P 9 15

Vì \(\Delta MNP\) vuông tại M nên nên theo định lý Pytago, ta có :

MP2 + MN2 = NP2

=> MP2 = NP2 - MN2 = 152 - 92 = 144 = 122

=> MP = 12 cm

9 tháng 3 2020

Vì tam giác MNP vuông tại M 

Áp dụng định lý pytago ta có MN2+ MP2 = NP2

suy ra 81 + MP2 = 225

suy ra MP = 12 (cm) Vì MP >0