x4-4x2+2m=0
Tìm m để phương trình có đúng 3 nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-x^2+\left(m+2\right)x+2m=0\)
\(\Delta=\left(m+2\right)^2+8m=\left(m+6\right)^2-32\)
Để phương trình có 2 nghiệm phân biệt
<=> \(\Delta>0\Leftrightarrow\left(m+2\right)^2>32\Leftrightarrow m>\sqrt{32}-2\)
Vì phương trình có 2 nghiệm phân biệt
Áp dụng hệ thức vi ét
\(\Rightarrow x_1+x_2=m+2\)
=> \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1+4x_2=0\end{matrix}\right.\)
\(\Rightarrow m=-3x_2-2\)
Bạn xem lại đề chứ k tìm được m luôn á
Đặt \(x^2=a\left(a\ge0\right)\)
Phương trình trở thành \(a^2-5a+m=0\)
\(\Delta=\left(-5\right)^2-4\cdot1\cdot m=-4m+25\)
Để phương trình \(x^4-5x^2+m=0\) có đúng 2 nghiệm phân biệt thì phương trình \(a^2-5a+m=0\)(\(a=x^2\)) có nghiệm kép
\(\Leftrightarrow\Delta=0\)
\(\Leftrightarrow-4m+25=0\)
\(\Leftrightarrow-4m=-25\)
hay \(m=\dfrac{25}{4}\)
Vậy: \(m=\dfrac{25}{4}\)
Đặt \(t=x^2\ge0\Rightarrow t^2-5t+m=0\) (1)
Ứng với mỗi giá trị \(t>0\) luôn cho 2 giá trị x phân biệt tương ứng nên pt đã cho có 2 nghiệm pb khi và chỉ khi (1) có đúng 1 nghiệm dương và 1 nghiệm âm
\(\Leftrightarrow\) (1) có 2 nghiệm trái dấu
\(\Leftrightarrow ac=m< 0\)
Vậy \(m< 0\)
Chọn D
Xét hàm số y = x 4 - 2 x 2 + 3 ( C )
Đồ thị có dạng như hình (1)
x 4 - 2 x 2 + 3 - m 2 + 2 m = 0 có đúng ba nghiệm phân biệt <=> Đường thẳng y = m 2 + 2 m cắt đồ thị C tại ba điểm phân biệt
\(\Delta=\left(4m-1\right)^2-4\left(2m+3\right)=16m^2-8m+4-8m-12\)
\(=16m^2-16m-8\)
Để pt có 2 nghiệm pb \(2m^2-2m-1>0\)
bạn ơi , mik tưởng 1 nhân vs 1 vẫn bằng 1 chứ sao lại bằng 4 ạ?
Δ=(-3)^2-4m^2=9-4m^2
Để phương trình có hai nghiệm thì 9-4m^2>=0
=>-2/3<=m<=2/3
x1^2-3x2+x1x2-m^2-2m-1>6-m^2
=>x1^2-x2(x1+x2)+x1x2>6-m^2+m^2+2m+1=2m+7
=>x1^2-x2^2>2m+7
=>(x1+x2)(x1-x2)>2m+7
=>(x1-x2)*3>2m+7
=>x1-x2>2/3m+7/3
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=3^2-4m^2=9-4m^2\)
=>\(x1-x2=\left|9-4m^2\right|\)
=>|9-4m^2|>2/3m+7/3
=>|4m^2-9|>2/3m+7/3
=>4m^2-9<-2/3m-7/3 hoặc 4m^2-9>2/3m+7/3
=>4m^2+2/3m-20/3<0 hoặc 4m^2-2/3m-34/3>0
=>\(\dfrac{-1-\sqrt{241}}{12}< m< \dfrac{-1+\sqrt{241}}{12}\) hoặc \(\left[{}\begin{matrix}m< \dfrac{1-\sqrt{409}}{12}\\m>\dfrac{1+\sqrt{409}}{12}\end{matrix}\right.\)
=>-2/3<=m<=2/3
Đáp án A
Bất phương trình ⇔ x 4 − 4 x 2 + 4 ≤ x 2 − 2 2 ≤ m + 3
Để bất phương trình có nghiệm thực thì m + 3 ≥ min x 2 − 2 2 = 0 ⇔ m ≥ − 3
\(2x^2-\left(4m+3x\right)x+2m^2-1=0\)
\(-x^2-4mx+2m^2-1=0\)
\(\Delta=\left(4m\right)^2+4\left(2m^2-1\right)=24m^2-4\)
Để phương trình có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\Leftrightarrow24m^2-4>0\Leftrightarrow m>\dfrac{1}{\sqrt{6}}\)
Vì phương trình có 2 nghiệm phân biệt, Áp dụng hệ thức Vi ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-4m\\x_1.x_2=1-2m^2\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=6\)
\(\Rightarrow\left(x_1+x_2\right)^2-2\left(x_1.x_2\right)=6\)
\(\Leftrightarrow16m^2-2\left(1-2m^2\right)=6\)
\(\Leftrightarrow20m^2=8\)
\(\Leftrightarrow m^2=\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{\dfrac{2}{5}}\left(TM\right)\\m=-\sqrt{\dfrac{2}{5}}\left(\text{Loại vì m}>\dfrac{1}{\sqrt{6}}\right)\end{matrix}\right.\)
Vậy ...
Theo hệ thức Vi - ét, ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2m + 1\\ {x_1}{x_2} = m - 7 \end{array} \right.\)
Theo đề bài, ta có: \({x_1} - {x_2} = 3\)
Từ đó ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2m + 1\\ {x_1} - {x_2} = 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_1} = m + 2\\ {x_2} = m - 1 \end{array} \right.\)
Với giá trị trên, ta có:
\(\begin{array}{l} \left( {m + 2} \right)\left( {m - 1} \right) = m - 7\\ \Leftrightarrow {m^2} + m - 2 = m - 7\\ \Leftrightarrow {m^2} = - 5 \end{array}\)
Vậy không có giá trị $m$ thỏa mãn
x2 - (2m + 1)x + m - 7 = 0
Có: \(\Delta\) = [-(2m + 1)]2 - 4.1.(m - 7) = 4m2 + 4m + 1 - 4m + 28 = 4m2 + 29 > 0
\(\Rightarrow\) x1 = \(\dfrac{2m+1+\sqrt{\Delta}}{2}\); x2 = \(\dfrac{2m+1-\sqrt{\Delta}}{2}\)
Lại có: x1 - x2 = 3
\(\Leftrightarrow\) \(\dfrac{2m+1+\sqrt{\Delta}-2m-1+\sqrt{\Delta}}{2}=3\)
\(\Leftrightarrow\) 2\(\sqrt{\Delta}\) = 6
\(\Leftrightarrow\) \(\sqrt{\Delta}\) = 3
\(\Leftrightarrow\) \(\Delta\) = 9
\(\Leftrightarrow\) 4m2 + 29 = 9
\(\Leftrightarrow\) m2 = -5 (Vô nghiệm)
Vậy không có giá trị m nào thỏa mãn đk
Chúc bn học tốt!
d) Để PT(1) có 3 nghiệm thì PT (2) phải có 1 nghiệm dương t1>0t1>0 và 1 nghiệm là t2=0t2=0
Thay t=0t=0 vào (2) ⟹m=±1⟹m=±1
Rồi thay ngược vào (2) ta thấy:
Với m=1⟺t=0m=1⟺t=0 v t=1(t/m)
Với m=−1⟺t=0m=−1⟺t=0 v t=−3 (ko t/m)
Vậy m=1 thì PT có 3 nghiệm.