ab+bc+ca=2
cm\(a^4+b^4+c^4\ge\frac{4}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng BĐT quen thuộc: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) với \(xy\ge1\)
\(2VT\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^2c^2}+\frac{2}{1+c^2a^2}\)
\(\Rightarrow VT\ge\frac{1}{1+a^2b^2}+\frac{1}{1+b^2c^2}+\frac{1}{1+c^2a^2}\)
\(\Rightarrow2VT\ge\frac{1}{1+a^2b^2}+\frac{1}{1+b^4}+\frac{1}{1+b^2c^2}+\frac{1}{1+c^4}\frac{1}{1+c^2a^2}+\frac{1}{1+a^4}\)
\(\Rightarrow2VT\ge\frac{2}{1+ab^3}+\frac{2}{1+bc^3}+\frac{2}{1+ca^3}\)
\(\Rightarrow VT\ge\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
a/ Từ BĐT ban đầu ta có:
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)
b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:
\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)
c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:
\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:
\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)
Mặt khác ta cũng có:
\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Trước hết, ta chứng minh bổ đề sau: Nếu \(a,b\ge1\)thì \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(\frac{1}{1+a}-\frac{1}{1+\sqrt{ab}}\right)+\left(\frac{1}{1+b}-\frac{1}{1+\sqrt{ab}}\right)\ge0\)\(\Leftrightarrow\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\left(1+a\right)\left(1+\sqrt{ab}\right)}+\frac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)\(\Leftrightarrow\frac{\sqrt{b}\left(1+a\right)\left(\sqrt{a}-\sqrt{b}\right)-\sqrt{a}\left(1+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)*đúng do \(\sqrt{ab}\ge1\)(vì a,b\(\ge1\))*
Áp dụng bổ đề trên, ta được: \(\left(\frac{1}{1+a^4}+\frac{1}{1+b^4}\right)+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)
Tương tự: \(\left(\frac{1}{1+b^4}+\frac{1}{1+c^4}\right)+\frac{2}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\left(\frac{1}{1+c^4}+\frac{1}{1+a^4}\right)+\frac{2}{1+a^4}\ge\frac{4}{1+ca^3}\)
Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{1}{1+c^4}\ge\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)(đpcm)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
BĐT sai khi \(a;b;c\) thuộc \(\left(0;1\right)\) và \(a;b;c\) không bằng nhau
Ta có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow a^2+b^2+c^2\ge2\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{4}{3}\)
\(\Rightarrow a^4+b^4+c^4\ge\frac{4}{3}\left(đpcm\right)\)
Dấu '=' xảy ra khi\(\hept{\begin{cases}a=b=c\\ab+bc+ca=2\end{cases}\Leftrightarrow a=b=c=\sqrt{\frac{2}{3}}}\)