K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2022

\(a,\left(2x-3\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(2x-3\right)\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=-2\end{matrix}\right.\\ b,2x-\left(3-5x\right)=4\left(x+3\right)\\ \Leftrightarrow2x-3+5x=4x+12\\ \Leftrightarrow7x-3-4x-12=0\\ \Leftrightarrow3x-15=0\\ \Leftrightarrow x=5\)

\(c,ĐKXĐ:\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)

\(\dfrac{1}{x-2}-\dfrac{2}{x+1}=\dfrac{11-3x}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{x+1}{\left(x-2\right)\left(x+1\right)}-\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}-\dfrac{11-3x}{\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x+1-x+2-11+3x}{\left(x+1\right)\left(x-2\right)}=0\\ \Rightarrow3x-8=0\\ \Leftrightarrow x=\dfrac{8}{3}\left(tm\right)\)

3:

a: u+v=14 và uv=40

=>u,v là nghiệm của pt là x^2-14x+40=0

=>x=4 hoặc x=10

=>(u,v)=(4;10) hoặc (u,v)=(10;4)

b: u+v=-7 và uv=12

=>u,v là các nghiệm của pt:

x^2+7x+12=0

=>x=-3 hoặc x=-4

=>(u,v)=(-3;-4) hoặc (u,v)=(-4;-3)

c; u+v=-5 và uv=-24

=>u,v  là các nghiệm của phương trình:

x^2+5x-24=0

=>x=-8 hoặc x=3

=>(u,v)=(-8;3) hoặc (u,v)=(3;-8)

a: =>|5x-2|=|2x-3|

=>5x-2=2x-3 hoặc 5x-2=-2x+3

=>3x=-1 hoặc 7x=5

=>x=5/7 hoặc x=-1/3

b: =>|5x-2|-|2x+2|=3x+5

TH1 x<-1

PT sẽ là 2-5x+2x+2=3x+5

=>-3x+4=3x+5

=>-6x=1

=>x=-1/6(loại)

TH2: -1<=x<2/5

Pt sẽ là 2-5x-2x-2=3x+5

=>-7x=3x+5

=>-4x=5

=>x=-5/4(loại)

Th3: x>=2/5

PT sẽ là 5x-2-2x-2=3x+5

=>3x-4=3x+5

=>0x=9(loại)

 

21 tháng 1 2019

a) |3x| = x + 6 (1)

Ta có 3x = 3x khi x ≥ 0 và 3x = -3x khi x < 0

Vậy để giải phương trình (1) ta quy về giải hai phương trình sau:

+ ) Phương trình 3x = x + 6 với điều kiện x ≥ 0

Ta có: 3x = x + 6 ⇔ 2x = 6 ⇔ x = 3 (TMĐK)

Do đó x = 3 là nghiệm của phương trình (1).

+ ) Phương trình -3x = x + 6 với điều kiện x < 0

Ta có -3x = x + 6 ⇔ -4x + 6 ⇔ x = -3/2 (TMĐK)

Do đó x = -3/2 là nghiệm của phương trình (1).

Vậy tập nghiệm của phương trình đã cho S = {3; -3/2}

ĐKXĐ: x ≠ 0, x ≠ 2

Quy đồng mẫu hai vễ của phương trình, ta được:

Vậy tập nghiệm của phương trình là S = {-1}

c) (x + 1)(2x – 2) – 3 > –5x – (2x + 1)(3 – x)

⇔ 2x2 – 2x + 2x – 2 – 3 > –5x – (6x – 2x2 + 3 – x)

⇔ 2x2 – 5 ≥ –5x – 6x + 2x2 – 3 + x

⇔ 10x ≥ 2 ⇔ x ≥ 1/5

Tập nghiệm: S = {x | x ≥ 1/5}

a: 3x-15=0

nên 3x=15

hay x=5

b: 4x+20=0

nên 4x=-20

hay x=-5

c: -5x-20=0

nên -5x=20

hay x=-4

18 tháng 1 2022

a) (3x + 2)2 - (3x - 2)2 = 5x + 38

<=> 6x.4 = 5x + 38 <=> 19x = 38 <=> x = 2

b) 3(x - 2)2 + 9(x - 1) = 3(x2 + x - 3)

<=> 3x2 - 12x + 12 + 9x - 9 = 3x2 + 3x - 9

<=> -6x = -12 <=> x = 2

c) (x + 3)2 - (x - 3)2 = 6x + 8

<=> 2x.6 = 6x + 8 <=> 6x = 8 <=> x = 4/3

d) (x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)

<=> x3 - 3x2 + 3x - 1 - x3 - 2x2 - x = 10x - 5x2 - 11x - 22

<=> 3x = -21 <=> x = -7

e) (x + 1)(x2 - x + 1) - 2x = x(x - 1)(x + 1)

<=> x3 - 1 - 2x = x3 - x

<=> x = -1