K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>x:x2-5x<0

=>x:x.x-5x<0

=>1.x-5x<0

=>x(1-5)<0

=>x.(-4)<0

=>x là một số nguyên bất kì

Dấu “=” xảy ra khi x=0 (Không chắc sai thì kệ :P)

6 tháng 5 2019

\(x^2-5x\le0\)

\(\Leftrightarrow x\left(x-5\right)\le0\)

\(TH:x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

\(TH:x\left(x-5\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x\\x-5\end{cases}}\) trái dấu

Mà x > x - 5 nên \(\hept{\begin{cases}x>0\\x-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x< 5\end{cases}}\Leftrightarrow x\in\left\{1;2;3;4\right\}\)

15 tháng 2 2022

Ta có : x + 4 > x - 9 

\(\left\{{}\begin{matrix}x+4>0\\x-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-4\\x< 9\end{matrix}\right.\)<=> -4 < x < 9 

15 tháng 2 2022

\(\left(x+4\right)\left(x-9\right)< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+4>0\\x-9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+4< 0\\x-9>0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-4\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< -4\\x>9\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-4< x< 9\)

6 tháng 11 2021

\(\left(x-1\right)^{x+1}-\left(x-1\right)^{x+12}=0\\ \Leftrightarrow\left(x-1\right)^{x+1}\left[1-\left(x-1\right)^{11}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+11}=0\\\left(x-1\right)^{11}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

6 tháng 11 2021

vì sao ở chỗ x-1=0 lại bỏ dấu mũ thế bạn giải thíc giúp mình với ^^

23 tháng 5 2022

a) (3x – 2)(4x + 5) = 0

 ⇔ 3x – 2 = 0 hoặc 4x + 5 = 0

 ⇔ 3x = 2 hoặc 4x  = -5

 ⇔ x = \(\dfrac{2}{3}\) hoặc x  = \(\dfrac{-5}{4}\)

 Vậy tập nghiệm là S = {\(\dfrac{2}{3}\)\(\dfrac{-5}{4}\)}

b) 2x(x – 3) + 5(x – 3) = 0

 ⇔ (x – 3)(2x + 5) = 0

 ⇔ x – 3 = 0 hoặc 2x + 5 = 0

 ⇔ x = 3 hoặc 2x = \(-5\)

 ⇔ x = 3 hoặc x = \(\dfrac{-5}{2}\)

 Vậy tập nghiệp là S = {3; \(\dfrac{-5}{2}\)}

23 tháng 5 2022

Cảm ơn~

5 tháng 5 2019

\(\frac{5x+4}{2006}+\frac{5x+3}{2007}=\frac{5x+2}{2008}+\frac{5x+1}{2009}\)

\(\Leftrightarrow\frac{5x+4}{2006}+1+\frac{5x+3}{2007}+1=\frac{5x+2}{2008}+1+\frac{5x+1}{2009}+1\)

\(\Leftrightarrow\frac{5x+2010}{2006}+\frac{5x+2010}{2007}=\frac{5x+2010}{2008}+\frac{5x+2010}{2009}\)

\(\Leftrightarrow\left(5x+2010\right)\left(\frac{1}{2006}+\frac{1}{2007}\right)=\left(5x+2010\right)\left(\frac{1}{2008}+\frac{1}{2009}\right)\)

\(\Leftrightarrow5x+2010=0\)

\(\Leftrightarrow5x=-2010\)

\(\Leftrightarrow x=-402\)

5 tháng 5 2019

2 4 6 và 8

a) Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-1\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b) Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)

d) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

12 tháng 8 2021

a,\(< =>\left(x-1\right)^2-5^2=0< =>\left(x-1-5\right)\left(x-1+5\right)=0\)

\(< =>\left(x-6\right)\left(x+4\right)=0=>\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b,\(< =>25x^2+10x+1-25x^2+9-30=0\)

\(< =>10x-20=0< =>10\left(x-2\right)=0< =>x=2\)

c,\(< =>x^3-1-x\left(x^2-4\right)-5=0\)

\(< =>x^3-1-x^2+4x-5=0< =>4x-6=0< =>x=\dfrac{6}{4}\)\(d,< =>\left(x-2\right)^3-x^3+3^3+6x^2+12x+6-15=0\)

\(< =>x^3-6x^2+12x-x^3+6x^2+12x+10=0\)

\(< =>24x+10=0< =>x=-\dfrac{5}{12}\)

a: Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)

b: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)

18 tháng 11 2021

\(a,\Leftrightarrow x^2-4x-x^2+5x=5\Leftrightarrow x=5\\ b,\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x^2-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

21 tháng 7 2021

Bài 10:

a) (x+2)2 -x(x+3) + 5x = -20

=> x2 + 4x + 4 - x2 - 3x + 5x = -20

=> 6x = -20 + (-4)

=> 6x = -24

=> x = -4

b) 5x3-10x2+5x=0   

=>5x(x2-2x+1)=0

=>5x(x-1)2 =0

=> 5x=0 hoặc (x-1)2=0

=>x=0 hoặc x=1

c) (x- 1)- (x+ x+ 1)(x- 1) = 0

=> (x2 - 1)[(x- 1)2 -  (x+ x+ 1)] = 0

<=> (x2 - 1)(x4 - 2x2 + 1 - x- x- 1) = 0

<=>  (x2 - 1)(-3x2) = 0

<=> (x2 - 1)=0 hoặc (-3x2) =0

<=> x2=1 hoặc x2=0

<=> x=−1;1 hoặc x=0

d)

(x+1)3−(x−1)3−6(x−1)2=-19

⇔x3+3x2+3x+1−(x3−3x2+3x−1)−6(x2−2x+1)+19=0

⇔x3+3x2+3x+1−x3+3x2−3x+1−6x2+12x−6+19=0

⇔12x+13=0⇔12x+13=0

⇔12x=-13

⇔x=-23/12

Học tốt nhé:333banhqua