K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

Cho hình vuông ABCD, M là trung điểm AB. Trên tia đối của tia CB vẽ CN=AM. I là trung điểm MN. Tia DI cắt BC tại E, MN cắt CD tại F. Từ M vẽ MK vuông góc với AB và cắt DE tại K.

a, Cm MKNE là hình thoi (đã làm được)

b, Cm A,I,C thẳng hàng

c, Cho AB=a. Tính diện tích  BMEtheo a (Đã làm được)

Giải Giùm mình đi, nhất là câu b

5 tháng 5 2019

\(x^2+2\left(m+2\right)x+m+8\)

\(a=1;b'=m+2;c=m+8\)

\(\Delta'=\left(m+2\right)^2-\left(m+8\right)\)

\(=m^2+4m+4-m-8=m^2+3m-4\)

Vì \(a=1\ne0\)nên để phương trình có 2 nghiệm x1,x2 

\(\Leftrightarrow\Delta'\ge0\Leftrightarrow m^2+3m-4\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\le-4\\x\ge1\end{cases}}\)

theo hệ thức vi-et,ta có:

S=x1+x2=-2m-2

p=x1.x2=m+8

có x1+x2=3x1x2+2

<=>-2m-2=3(m+8)+2

<=>-2m-2=3m+24+2

<=>m=\(-\frac{28}{5}\)

Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m+1\right)\)

\(=\left(-2m+2\right)^2-4\left(m+1\right)\)

\(=4m^2-8m+4-4m-4\)

\(=4m^2-12m\)

Để phương trình có nghiệm thì \(\text{Δ}\ge0\)

\(\Leftrightarrow4m^2-12m\ge0\)

\(\Leftrightarrow4m\left(m-3\right)\ge0\)

\(\Leftrightarrow m\left(m-3\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\)

Khi \(\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\), Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=m+1\end{matrix}\right.\)

Ta có: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

\(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1\cdot x_2}=4\)

\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\)

\(\Leftrightarrow\dfrac{\left(2m-2\right)^2-2\cdot\left(m+1\right)}{m+1}=4\)

\(\Leftrightarrow4m^2-8m+4-2m-2=4\left(m+1\right)\)

\(\Leftrightarrow4m^2-10m+2-4m-4=0\)

\(\Leftrightarrow4m^2-14m-2=0\)

Đến đây bạn tự làm nhé, chỉ cần tìm m và đối chiều với điều kiện thôi

30 tháng 3 2021

Pt có 2 nghiệm

\(\to \Delta=[-2(m-1)]^2-4.1.(m+1)=4m^2-8m+4-4m-4=4m^2-12m\ge 0\)

\(\leftrightarrow m^2-3m\ge 0\)

\(\leftrightarrow m(m-3)\ge 0\)

\(\leftrightarrow \begin{cases}m\ge 0\\m-3\ge 0\end{cases}\quad or\quad \begin{cases}m\le 0\\m-3\le 0\end{cases}\)

\(\leftrightarrow m\ge 3\quad or\quad m\le 0\)

Theo Viét

\(\begin{cases}x_1+x_2=2(m-1)\\x_1x_2=m+1\end{cases}\)

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

\(\leftrightarrow \dfrac{x_1^2+x_2^2}{x_1x_2}=4\)

\(\leftrightarrow \dfrac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=4\)

\(\leftrightarrow \dfrac{[2(m-1)]^2-2.(m+1)}{m+1}=4\)

\(\leftrightarrow 4m^2-8m+4-2m-2=4(m+1)\)

\(\leftrightarrow 4m^2-10m+2-4m-4=0\)

\(\leftrightarrow 4m^2-14m-2=0\)

\(\leftrightarrow 2m^2-7m-1=0 (*)\)

\(\Delta_{*}=(-7)^2-4.2.(-1)=49+8=57>0\)

\(\to\) Pt (*) có 2 nghiệm phân biệt

\(m_1=\dfrac{7+\sqrt{57}}{2}(TM)\)

\(m_2=\dfrac{7-\sqrt{57}}{2}(TM)\)

Vậy \(m=\dfrac{7\pm \sqrt{57}}{2}\) thỏa mãn hệ thức

AH
Akai Haruma
Giáo viên
13 tháng 5 2021

Lời giải:

$\Delta'=4+m^2+1=5+m^2>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=-(m^2+1)\end{matrix}\right.\)

Khi đó:

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=-\frac{1}{2}\)

\(\Leftrightarrow \frac{16}{-(m^2+1)}=\frac{-1}{2}\Leftrightarrow m^2+1=32\)

\(\Rightarrow m=\pm \sqrt{31}\)

13 tháng 5 2021

Cô hỗ trợ câu mới nhất em gửi vào inb nhé cô !

a: \(\Delta=\left(-5\right)^2-4\cdot1\cdot\left(m-2\right)=25-4m+8=-4m+33\)

Để phương trình có nghiệm thì -4m+33>=0

=>-4m>=-33

hay m<=33/4

Theo đề, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5}{3}\\x_1=\dfrac{10}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=m-2\)

=>m-2=50/9

hay m=68/9

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow5^2-2\left(m-2\right)=6\)

=>25-2(m-2)=6

=>2(m-2)=19

=>m-2=19/2

hay m=23/2

d: \(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=14\)

\(\Leftrightarrow25-4\left(m-2\right)=196\)

=>4(m-2)=-171

=>m-1=-171/4

hay m=-163/4

Δ=(-2m)^2-4(m^2-m)

=4m^2-4m^2+4m=4m

Để (1) có 2 nghiệm phân biệt thì 4m>0

=>m>0

x1^2+x2^2=4-3x1x2

=>(x1+x2)^2-2x1x2=4-3x1x2

=>(2m)^2+m^2-m=4

=>4m^2+m^2-m-4=0

=>5m^2-m-4=0

=>5m^2-5m+4m-4=0

=>(m-1)(5m+4)=0

=>m=1 hoặc m=-4/5(loại)

20 tháng 5 2016

a/ Thay m = 1 vào pt ta được: x2 + 2 = 0 => x2 = -2 => pt vô nghiệm

b/ Theo Vi-ét ta được: \(\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m+1\end{cases}\)

    \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(2m-2\right)^2-2\left(m+1\right)}{m+1}=4\) \(\Leftrightarrow\frac{4m^2-8m+4-2m-2}{m+1}=4\) \(\Leftrightarrow4m^2-10m+2=4m+4\) \(\Leftrightarrow4m^2-14m-2=0\)

Giải denta ra ta được 2 nghiệm: \(\begin{cases}x_1=\frac{7+\sqrt{57}}{4}\\x_2=\frac{7-\sqrt{57}}{4}\end{cases}\)

20 tháng 5 2016

Khi m=1 ta có : \(x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)

Pt 2 nghiệm x1 ; x2 thỏa mãn : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1+x_2}=4\Leftrightarrow\frac{x_1^2+x_2^2-2x_1x_2+2x_1x_2}{x_1+x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1+x_2}=4\) (1)

Theo viet ta có: \(x_1x_2=\frac{c}{a}=\left(m+1\right)\)\(x_1+x_2=\frac{-b}{a}=2\left(m+1\right)\)

Thay vài (1) ta có: \(\frac{\left[2\left(m+1\right)\right]^2-2\left(m-1\right)}{2\left(m+1\right)}=4\) \(\Leftrightarrow4\left(m^2+2m+1\right)-2m+1=8\left(m+1\right)\Leftrightarrow4m^2+6m+5-8m-8=0\) \(\Leftrightarrow4m^2-2m-3=0\Leftrightarrow\left[\begin{array}{nghiempt}m=\frac{1+\sqrt{13}}{4}\\m=\frac{1-\sqrt{13}}{4}\end{array}\right.\)

13 tháng 12 2019

Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi 

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Lời giải:

a) Khi $m=2$ thì pt trở thành:

$x^2-10x+15=0\Leftrightarrow (x-5)^2=10\Rightarrow x=5\pm \sqrt{10}$
b) 

Để pt có 2 nghiệm pb $x_1,x_2$ thì trước tiên:

$\Delta'=(2m+1)^2-(4m^2-2m+3)>0$

$\Leftrightarrow 6m-2>0\Leftrightarrow m>\frac{1}{3}$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(2m+1)\\ x_1x_2=4m^2-2m+3\end{matrix}\right.\)

Để $(x_1-1)^2+(x_2-1)^2+2(x_1+x_2-x_1x_2)=18$

$\Leftrightarrow x_1^2+x_2^2-2(x_1+x_2)+2+2(x_1+x_2-x_1x_2)=18$

$\Leftrightarrow x_1^2+x_2^2-2x_1x_2=16$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=16$

$\Leftrightarrow 4(2m+1)^2-4(4m^2-2m+3)=16$

$\Leftrightarrow (2m+1)^2-(4m^2-2m+3)=4$

$\Leftrightarrow 6m-2=4\Leftrightarrow m=1$ (thỏa mãn)

vậy...........

1 tháng 6 2023

Không đăng lại nha.

1 tháng 6 2023

hông bé ơi