giải bài hệ này giúp tớ với
x^2-4x+3=0 và x^2+xy+y^2=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
xy=2
=>x=1 thì y =2 ; x=2 thì y=1
2)
xy=42
=>Ư(42)={1;2;3;6;7;14;21;42}
vì x>y
nên x=42 thì y=1
x=14 thì y=3
x=21 thì y=2
x=7 thì y=6
3)
ta có xy=35
=> Ư(35)={1;;5;7;35}
vì x<y
nên x=1 thì y=35
x=5 thì y=7
Dự đoán dấu "=" xảy ra khi x = y. Gộp một cách hợp lí các số hạng để áp dụng bất đẳng thức.
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)
Dấu "=" xảy ra khi x = y = 1/2.
GTNN của A là 6.
\(B=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{8057}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{8057}{\left(x+y\right)^2}=\frac{4}{\left(x+y\right)^2}+2+\frac{8057}{\left(x+y\right)^2}=8063\)
Dấu "=" xảy ra khi x = y = 1/2.
Vậy GTNN của B là 8063.
3, A=(x-3)^2+(x-11)^2
\(\Rightarrow\)(X^2-3^2)+(x^2-11^2)
\(\Rightarrow\)(X^2-9)+(X^2-121)
Ta có :X^2 \(\ge\)0 và X^2 \(\ge\)0
\(\Rightarrow\)X^2 - 9 \(\le\)-9 và X^2- 121 \(\le\)-121
\(\Rightarrow\)(X^2-9)+(X^2-121)\(\le\)-130
Dấu = xảy ra khi : X=0
Vậy : Min A = -130 khi x=0
Mình mới lớp 7 sai thì thôi nhé
\(\hept{\begin{cases}x^2-4x+3=0\\x^2+xy+y^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-1\right)\left(x-3\right)=0\\x^2+xy+y^2=1\end{cases}}\)
\(\Leftrightarrow\left(I\right)\hept{\begin{cases}x=1\\x^2+xy+y^2=1\end{cases}\left(h\right)\left(II\right)\hept{\begin{cases}x=3\\x^2+xy+y^2=1\end{cases}}}\)
Giải hệ (I) \(\hept{\begin{cases}x=1\\x^2+xy+y^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\1+y+y^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y^2+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y\left(y+1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=0\end{cases}\left(h\right)\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
Giải hệ (II)\(\hept{\begin{cases}x=3\\x^2+xy+y^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\9+3y+y^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y^2+3y+8=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\\left(y+\frac{3}{2}\right)^2+\frac{23}{4}=0\end{cases}}\)hệ vô nghiệm