Dùng đồng dư thức tìm số dư : 72005:10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 9867 mũ 2024 = 9867 mũ 4 .506
mà 9867 mũ 4 . 506 đồng dư 1 [ mod 10 ]
suy ra : 9867 mũ 2024 đồng dư 1 [ mod 10 ]
Vậy chữ số hàng đơn vị của 9867 mũ 2024 là 1
10 đồng dư với 1(mod 3)
=>102015 đồng dư với 12015(mod 3)
=>102015 đồng dư với 1 (mod 3)
=>102015 +2 đồng dư với 1+2 (mod 3)
=>102015+2 đồng dư với 3 (mod 3)
=>102015+2 chia hết cho 3
10^2015+2=100...00+2(2015cs0)
=100...02(2014cs0)
vì 100...02 có tổng các chữ số là 1+0*2014+2=3
mà 3 chia hết cho 3 nên 100...02 chia hết cho 3
hay 10^2015 chia hết cho 3
Nhớ tick cho mình nha
Mình làm cách khác được kết quả là 25
Còn cách này mình chưa biết làm , mong các bạn giúp đỡ
Đúng mình sẽ tick cho 2 tick
a.
\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)
Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)
\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)
Hay \(2^{2024}\) chia 7 dư 4
b.
\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)
Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)
\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)
Hay \(5^{70}+7^{50}\) chia 12 dư 2
c.
\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)
Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)
\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)
Hay \(3^{2005}+4^{2005}\) chia 11 dư 2
d.
\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)
Hay \(1044^{205}\) chia 7 dư 1
e.
\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)
Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)
\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)
hay \(3^{2003}\) chia 13 dư 9