\(P=x^2-2xyz+z^2\)và \(Q=3xyz-z^2+5x^2\)
tính P+Q và P - Q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107`
`a)`
`A=`\(3x^4 + \dfrac{1}3xyz - 3x^4 - \dfrac{4}3xyz + 2x^2y - 6z\)
`= (3x^4 - 3x^4) + (1/3xyz - 4/3xyz) + 2x^2y - 6z`
`= -xyz + 2x^2y - 6z`
Thay `x = 1; y = 3` và `z = 1/3` vào A
`A = -1*3*1/3 + 2*1^2*3 - 6*1/3`
`= -1 + 6 - 2`
`= 6 - 3`
`= 3`
Vậy, `A=3`
`b)`
`B=`\(4x^3 - \dfrac{2}7xyz - 4x^3 - \dfrac{4}3xyz + 4x^2y\)
`= (4x^3 - 4x^3) + (-2/7xyz - 4/3xyz) + 4x^2y`
`= -34/21 xyz + 4x^2y`
Thay `x = -1; y = 2` và `z = -1/2` vào B
`B = -34/21*(-1)*2*(-1/2) + 4*(-1)^2 * 2`
`= -34/21 + 8`
`= 134/21`
Vậy, `B = 134/21`
`c)`
`C=`\(4x^2 + \dfrac{1}2xyz - \dfrac{2}3xy^2z - 5x^2yz + \dfrac{3}4xyz\)
`= 4x^2 + (1/2xyz + 3/4xyz) - 2/3xy^2z - 5x^2yz `
`= 4x^2 + 5/4xyz - 2/3xy^2z - 5x^2yz`
Ta có:
`|y| = 2`
`=> y = +-2`
Thay `x = -1; y = 2` và `z = 1/2` vào C
`4*(-1)^2 + 5/4*(-1)*2*1/2 - 2/3*(-1)*2^2*1/2 - 5*(-1)^2*2*1/2`
`= 4 - 5/4 + 4/3 - 5`
`= -11/12`
Vậy, với `x = -1; y = 2; z = 1/2` thì `B = -11/12`
Thay `x = -1; y = -2; z = 1/2`
`B = 4*(-1)^2 + 5/4*(-1)*(-2)*1/2 - 2/3*(-1)*(-2)^2*1/2 - 5*(-1)^2*(-2)*1/2`
`= 4 + 5/4 + 4/3 + 5`
`= 139/12`
Vậy, với `x = -1; y = -2; z = 1/2` thì `B = 139/12.`
b \(x^8y^8+x^4y^4+1=x^8y^8+2x^4y^4+1-x^4y^4=\left(x^4y^4\right)^2+2x^4y^4+1-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2=\left(x^4y^4-x^2y^2+1\right)\left(x^4y^4+x^2y^2+1\right)\)
c \(x^2y+xy^2+xz^2+x^2z+y^2z+yz^2+2xyz=\left(x^2y+x^2z+xyz+xy^2\right)+\left(xz^2+yz^2+xyz+y^2z\right)\)
\(=x\left(xy+xz+yz+y^2\right)+z\left(xz+yz+xy+y^2\right)=\left(x+z\right)\left(xy+xz+yz+y^2\right)\)
\(=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)
a \(3xyz+x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)=3xyz+xy^2+xz^2+x^2y+yz^2+x^2z+y^2z\)
\(=\left(x^2y+x^2z+xyz\right)+\left(xy^2+xyz+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)
\(=x\left(xy+xz+yz\right)+y\left(xy+xz+yz\right)+z\left(xy+xz+yz\right)=\left(x+y+z\right)\left(xy+xz+yz\right)\)
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
Trường hợp x=y=z thì không phải bàn,ns cái trường hợp x+y+z=0
\(\frac{1}{x^2+y^2-z^2}=\frac{1}{\left(x+y\right)^2-2xy-z^2}=\frac{1}{\left(-z\right)^2-z^2-2xy}=\frac{1}{-2xy}\)
Tương tự rồi cộng lại thì \(BT=0\) thì phải
Condition\(\hept{\begin{cases}x\ne0\\y\ne0\\z\ne0\end{cases}}\)
Put \(P=\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{z^2+x^2-y^2}\)
\(=\frac{1}{x^2+\left(y-z\right)\left(y+z\right)}+\frac{1}{y^2+\left(z-x\right)\left(z+x\right)}+\frac{1}{z^2+\left(x-y\right)\left(x+y\right)}\left(4\right)\)
Because \(x^2+y^2+z^2=3xyz\)
\(\Leftrightarrow x^2+y^2+z^2-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xyz-3xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=0\)ư\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2yz-2zx\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\end{cases}}\)
The first case: If \(x+y+z=0\left(1\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}\left(2\right)}\)
From \(\left(1\right)\Rightarrow\hept{\begin{cases}x-y=-2y-z\\y-z=-2z-x\\z-x=-2x-y\end{cases}\left(3\right)}\)
\(\left(2\right)\)and \(\left(3\right)\)into \(\left(4\right)\)we have
\(P=\frac{1}{x^2-x\left(-2z-x\right)}+\frac{1}{y^2-y\left(-2x-y\right)}+\frac{1}{z^2-z\left(-2y-z\right)}\)
\(=\frac{1}{2x^2+2xz}+\frac{1}{2y^2+2xy}+\frac{1}{2z^2+2yz}\)
\(=\frac{1}{2x\left(x+z\right)}+\frac{1}{2y\left(x+y\right)}+\frac{1}{2z\left(z+y\right)}\)
\(\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}\)
\(\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}\)
\(=\frac{z+x+y}{-2xyz}=0\)( Because x+y+z=0)
The second case:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\left(5\right)\)
We have \(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y,z\\\left(y-z\right)^2\ge0;\forall x,y,z\\\left(z-x\right)^2\ge0;\forall x,y,z\end{cases}}\)\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0;\forall x,y,z\left(6\right)\)
From \(\left(5\right),\left(6\right)\)\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z}\)
Because \(x=y=z\Rightarrow x^2=y^2=z^2=xy=yz=zx\)
So \(P=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
\(=\frac{z+x+y}{xyz}=0\)
So...
P = x^2 - 2xyz + z^2
Q = 5x^2 + 3xyz - z^2
=> P + Q = 6x^2 + xyz
P - Q = -4x^2 - 5xyz + 2z^2
\(P+Q=x^2-2xyz-z^2+3xyz-z^2+5x^2\)
\(=\left(x^2+5x^2\right)+\left(-2xyz+3xyz\right)+\left(-z^2-z^2\right)\)
\(=6x^2+xyz-2z^2\)
\(P-Q=x^2-2xyz-z^2-3xyz+z^2-5x^2\)
\(=\left(x^2-5x^2\right)+\left(-2xyz-3xyz\right)+\left(-z^2+z^2\right)\)
\(=-4x^2-5xyz\)