giải phương trình: \(\left|x-2011\right|^{2011}+\left|x-2012\right|^{2012}=1\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NV
Nguyễn Việt Lâm
Giáo viên
12 tháng 12 2020
Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)
Ta có : | x - 2011 |2011 + | x - 2012 |2012 \(\ge\)0
Mà | x - 2011 |2011 + | x - 2012 |2012 = 1
xét 2 TH :
TH1 : | x - 2011 |2011 = 0 ; | x - 2012 |2012 = 1
\(\Rightarrow\)x = 2011
TH2 : | x - 2011 |2011 = 1 ; | x - 2012 |2012 = 0
\(\Rightarrow\)x = 2012
vậy x = 2011 hoặc x = 2012
+) Xét x < 2011 thì \(x-2012< -1\)
\(\Rightarrow\left|x-2012\right|^{2012}>1\)
Mà \(\left|x-2011\right|^{2011}>0\forall x< 2011\)
\(\Rightarrow VT>1\left(vl\right)\)
+) Xét x = 2011 thì thỏa mãn
+) Xét 2011 < x < 2012 thì \(\hept{\begin{cases}0< x-2011< 1\\-1< x-2012< 0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2011\right|^{2011}< x-2011\\\left|x-2012\right|^{2012}< 2012-x\end{cases}}\)
\(\Rightarrow VT< 1\left(vl\right)\)
+) Xét x = 2012 thì thỏa mãn
+) Xét x > 2012 thì \(x-2011>1\)
\(\Rightarrow\left|x-2011\right|^{2011}>1\)
và \(\left|x-2012\right|^{2012}>0\forall x>2012\)
\(\Rightarrow VT>1\)(vl)
Vậy tập nghiệm S = {2011;2012}