Cho các số nguyên x,y thoả mãn 5x - 2y = 1. Tìm giá trị nhỏ nhất của biểu thức T = 3 | x | + 5 | y |
Giải thích đầy đủ nha mn giúp mình mai thi HKII rùi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x-2y=1\)(1)
Có \(\left(5,2\right)=1\)là ước của \(1\)nên phương trình có vô số nghiệm.
Thấy \(\left(1,2\right)\)là một nghiệm của (1) nên nghiệm tổng quát của (1) là:
\(\hept{\begin{cases}x=1+\frac{-2}{1}t=1-2t\\y=2+\frac{5}{1}t=2+5t\end{cases}}\left(t\inℤ\right)\)
\(P=3x+5y=3\left(1-2t\right)+5\left(2+5t\right)=13+19t\)
Dễ thấy \(P\)không có giá trị nhỏ nhất do \(t\inℤ\).
Nếu đổi điều kiện là \(x,y\)là các số tự nhiên.
Ta có: \(\hept{\begin{cases}x=1+\frac{-2}{1}t=1-2t\\y=2+\frac{5}{1}t=2+5t\end{cases}}\left(t\inℤ\right)\)suy ra \(\hept{\begin{cases}1-2t\ge0\\2+5t\ge0\end{cases}}\Leftrightarrow\frac{-2}{5}\le t\le\frac{1}{2}\)suy ra \(t=0\).
Khi đó \(P=3.1+5.2=13\).
Đáp án C.
Ta có:
G T ⇔ 5 x + 2 y + x + 2 y − 3 − x − 2 y = 5 x y − 1 − 3 1 − x y + x y − 1.
Xét hàm số
f t = 5 t + t − 3 − t ⇒ f t = 5 t ln 5 + 1 + 3 − t ln 3 > 0 ∀ t ∈ ℝ
Do đó hàm số đồng biến trên ℝ suy ra f x + 2 y = f x y − 1 ⇔ x + 2 y = x y − 1
⇔ x = 2 y + 1 y − 1 ⇒ T = 2 y + 1 y − 1 + y . Do x > 0 ⇒ y > 1
Ta có: T = 2 + y + 3 y − 1 = 3 + y − 1 + 3 y − 1 ≥ 3 + 2 3 .
Đáp án C.
Ta có: GT
<=> 5x+2y + x + 2y – 3–x–2y = 5xy–1 – 31–xy + xy – 1.
X é t h à m s ố f t = 5 t + t - 3 - t
⇒ f t = 5 t ln 5 + 1 + 3 - t ln 3 > 0 ∀ t ∈ ℝ
Do đó hàm số đồng biến trên ℝ suy ra
f(x+2y) = f(xy – 1) <=> x+ 2y = xy – 1
⇔ x = 2 y + 1 y - 1 ⇒ T = 2 y + 1 y - 1 + y .
Do x > 0 => y > 1.
Ta có:
T = 2 + y + 3 y - 1 = 3 + y - 1 + 3 y - 1 ≥ 3 + 2 3 .
Đáp án B.
Từ giả thiết, suy ra
Xét hàm số f ( t ) = 5 t - 1 3 t + t trên ℝ .
Đạo hàm f ' ( t ) = 5 t . ln 5 - ln 3 3 t + 1 > 0 , ∀ t ∈ ℝ ⇒ hàm số f ( t ) luôn đồng biến trên ℝ .
Suy ra
Do y > 0 nên x + 1 x - 2 > 0 ⇔ [ x > 2 x < - 1 . Mà x > 0 nên x > 2 .
Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2 trên 2 ; + ∞ .
Đạo hàm
Lập bảng biến thiên của hàm số trên 2 ; + ∞ , ta thấy min g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .
Vậy T m i n = 3 + 2 3 khi x = 2 + 3 và x = 1 + 3 .