K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2019

f(-1)=a-b+c

f(3)=9a+3b+c

f(3)-f(-1)=8a+b=4(2a+b)

Mà 2a+b=0 =) f(3)-f(-1)=0

=) f(3)=f(-1) =) f(3).f(-1)=(a-b+c)^2

Mà (a-b+c)^2 >= 0 =) f(-1).f(3)>=0

25 tháng 4 2019

Ta có : f(x) = ax2 + bx + c

=> f( -1 ) = a - b + c

    f(3) = 9a + 3b + c

=> f(3) - f( -1 ) = 8a + 4b = 4 ( 2a + b ) = 4.0 = 0

=> f(3) = f( -1 )

=> f( -1 ). f(3) = f(3). f(3) = [ f(3) ]2 \(\ge\) 0

=> đpcm

Study well ! >_<

16 tháng 1 2016

Toan lop 7 ma sao kho the?!!!!! Minh bo tay!

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải:

$f(0)=a.0^2+b.0+c=c$ nguyên 

$f(1)=a+b+c$ nguyên, mà $c$ nguyên nên $a+b+c-c=a+b$ nguyên 

$f(2)=4a+2b+c=2a+2(a+b)+c$ nguyên mà $a+b, c$ nguyên nên $2a$ nguyên 

$2a$ nguyên, $2(a+b)$ nguyên nên $2b$ nguyên.

Ta có đpcm.

22 tháng 2 2019

Ta có:

\(f\left(0\right)=c\in Z\)(1)

\(f\left(1\right)=a+b+c\in Z\)(2)

\(f\left(2\right)=4a+2b+c\in Z\)(3)_

Từ (1), (2) => \(a+b\in Z\)=> \(2a+2b\in Z\)(4)

Từ (1), (3)=> 4a+2b\(\in Z\)(5)

Từ (4), (5) => \(\left(4a+2b\right)-\left(2a+2b\right)\in Z\)

=> \(2a\in Z\)=> \(2b\in Z\)

30 tháng 5 2020

\(f\left(0\right)=a.0^2+b.0+c=c\) có giá trị nguyên 

\(f\left(1\right)=a+b+c\) có giá trị nguyên => a + b có giá trị nguyên 

\(f\left(2\right)=4a+2b+c=2a+2\left(a+b\right)+c\)=> 2a có giá trị nguyên 

=> 4a có giá trị nguyên 

=> 2b có giá trị nguyên.

11 tháng 3 2018

Cho f(x)= ax^2 + bx +c thỏa mãn 2a+6b+19c=0 
CMR: phương trình ax^2 + bx +c = 0 có nhiệm trong đoạn [0;1/3] 
-------- 
ta có: 
f(0) = c 
f(1/3) = a/9 + b/3 + c 
=> f(0) + 18.f(1/3) = c + 2a + 6b + 18c = 2a + 6b + 19c = 0 (*) 
Nếu f(0) = 0 hoặc f(1/3) = 0 => f(x) = 0 có nghiệm là 0 hoặc 1/3 thuộc [0,1/3] 
nếu f(0) ≠ 0 và f(1/3) ≠ 0 tự (*) => f(0).f(1/3) ≤ 0 => f(x) = 0 có nghiệm thuộc [0,1/3] 
 Cho f(x)= ax^2 + bx +c thỏa mãn 2a+3b+6c=0 
a) Tính a,b,c theo f(0), f(1), f(1/2) 
f(0) = c 
f(1) = a + b + c 
f(1/2) = a/4 + b/2 + c 

b) CMR ba số f(0), f(1), f(1/2) không thể cùng dấu: 
f(0) + f(1) + 4f(1/2) = c + a+b+c + a + 2b + 4c = 2a + 3b + 6c = 0 
=> f(0) , f(1) , f(1/2) không thể cùng dấu. 

11 tháng 3 2018

Cho f(x)= ax^2 + bx +c thỏa mãn 2a+6b+19c=0 
CMR: phương trình ax^2 + bx +c = 0 có nhiệm trong đoạn [0;1/3] 
-------- 
ta có: 
f(0) = c 
f(1/3) = a/9 + b/3 + c 
=> f(0) + 18.f(1/3) = c + 2a + 6b + 18c = 2a + 6b + 19c = 0 (*) 
Nếu f(0) = 0 hoặc f(1/3) = 0 => f(x) = 0 có nghiệm là 0 hoặc 1/3 thuộc [0,1/3] 
nếu f(0) ≠ 0 và f(1/3) ≠ 0 tự (*) => f(0).f(1/3) ≤ 0 => f(x) = 0 có nghiệm thuộc [0,1/3] 
 Cho f(x)= ax^2 + bx +c thỏa mãn 2a+3b+6c=0 
a) Tính a,b,c theo f(0), f(1), f(1/2) 
f(0) = c 
f(1) = a + b + c 
f(1/2) = a/4 + b/2 + c 
b) CMR ba số f(0), f(1), f(1/2) không thể cùng dấu: 
f(0) + f(1) + 4f(1/2) = c + a+b+c + a + 2b + 4c = 2a + 3b + 6c = 0 
=> f(0) , f(1) , f(1/2) không thể cùng dấu. 

:3