Bài 1. Cho ΔABC nhọn (AB<AC) có ba đường cao AF, BD và CE cắt nhau tại H.
a) Chứng minhΔAEC ∼ΔADB
b) Chứng minhΔDAE∼Δ BAC
c) Chứng minh BE.AB+ CD.AC= \(BC^2\)
d) AF cắt DE tại I. Chứng minh HI.AF = AI.HF
Bài 2. Cho hình thang ABCD (AB//CD) có AB =4cm, CD=16cm, BD=8cm. Chứng minh:
a)\(\widehat{BAD}=\widehat{DBC}\)
b) Gọi M là giao điểm của DA và CB, biết BC=6cm. Tính độ dài MC
c) Vẽ AH⊥BD, BK ⊥DC( H∈BD,K∈DC). Chứng minh \(S_{BKC}=4S_{ADH}\)