giải phương trình: \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)
\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)
\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)
4) Ta có: \(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)
\(\Leftrightarrow\left(x+3\right)\cdot\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\10-x^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x^2-8x+16-10+x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x^2-8x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\2\left(x^2-4x+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=3\end{matrix}\right.\)
1) \(\sqrt{x^2+1}=\sqrt{5}\)
\(\Leftrightarrow x^2+1=5\)
\(\Leftrightarrow x^2=5-1\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x^2=2^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
2) \(\sqrt{2x-1}=\sqrt{3}\) (ĐK: \(x\ge\dfrac{1}{2}\))
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=3+1\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=\dfrac{4}{2}\)
\(\Leftrightarrow x=2\left(tm\right)\)
3) \(\sqrt{43-x}=x-1\) (ĐK: \(x\le43\))
\(\Leftrightarrow43-x=\left(x-1\right)^2\)
\(\Leftrightarrow x^2-2x+1=43-x\)
\(\Leftrightarrow x^2-x-42=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)
4) \(x-\sqrt{4x-3}=2\) (ĐK: \(x\ge\dfrac{3}{4}\))
\(\Leftrightarrow\sqrt{4x-3}=x-2\)
\(\Leftrightarrow4x-3=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-4x+4=4x-3\)
\(\Leftrightarrow x^2-8x+7=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
5) \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\) (ĐK: \(x\ge0\))
\(\Leftrightarrow\sqrt{x}+3=2\sqrt{x}+2\)
\(\Leftrightarrow2\sqrt{x}-\sqrt{x}=3-2\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1^2\)
\(\Leftrightarrow x=1\left(tm\right)\)
1)
\(\sqrt{x^2+1}=\sqrt{5}\\ \Leftrightarrow x^2+1=5\\ \Leftrightarrow x^2=5-1=4\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy PT có nghiệm `x=2` hoặc `x=-2`
2)
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{2x-1}=\sqrt{3}\\ \Leftrightarrow2x-1=3\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\left(tm\right)\)
Vậy PT có nghiệm `x=2`
3)
\(ĐKXĐ:x\le43\)
PT trở thành:
\(43-x=\left(x-1\right)^2=x^2-2x+1\\ \Leftrightarrow43-x-x^2+2x-1=0\\ \Leftrightarrow-x^2+x+42=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)
Vậy PT có nghiệm `x=-6` hoặc `x=7`
4)
ĐKXĐ: \(x\ge\dfrac{3}{4}\)
PT trở thành:
\(\sqrt{4x-3}=x-2\\ \Leftrightarrow4x-3=\left(x-2\right)^2=x^2-4x+4\\ \Leftrightarrow4x-3-x^2+4x-4=0\\ \Leftrightarrow-x^2+8x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)
Vậy PT có nghiệm \(x=1\) hoặc \(x=7\)
5)
ĐKXĐ: \(x\ge0\)
PT trở thành:
\(\sqrt{x+3}=2\sqrt{x}+2\\ \Leftrightarrow x+3=\left(2\sqrt{x}+2\right)^2=4x+8\sqrt{x}+4\\ \Leftrightarrow x+3-4x-8\sqrt{x}-4=0\\ \Leftrightarrow-3x-8\sqrt{x}-1=0\left(1\right)\)
Đặt \(\sqrt{x}=t\left(t\ge0\right)\)
Khi đó:
(1)\(\Leftrightarrow3t^2+8t+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-4+\sqrt{13}}{3}\left(loại\right)\\t=\dfrac{-4-\sqrt{13}}{3}\left(loại\right)\end{matrix}\right.\)
Vậy PT vô nghiệm.
a) Áp dụng bđt AM-GM có:
\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)
\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)
Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)
Vậy...
b)Đk:\(x\ge2\)
Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)
\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)
Do \(x\ge2\Rightarrow x-1>0\)
Chia cả hai vế của pt cho x-1 ta được:
\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)
Vậy S={2}
c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)
Thay x=3 vào pt thấy thỏa mãn
Vậy S={3}
a) Quên mất, ko áp dụng đc AM-GM, xin lỗi
Pt \(\Leftrightarrow\sqrt[3]{9-x}-2=2-\sqrt[3]{7+x}\)
\(\Leftrightarrow\dfrac{9-x-8}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{8-\left(7-x\right)}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\)
\(\Leftrightarrow\dfrac{1-x}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{1-x}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{1}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4=4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}\left(1\right)\end{matrix}\right.\)
Từ (1) \(\Leftrightarrow\sqrt[3]{\left(9-x\right)^2}-\sqrt[3]{\left(7+x\right)^2}+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)
\(\Leftrightarrow\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)\left(\sqrt[3]{9-x}+\sqrt[3]{7+x}\right)+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)
\(\Leftrightarrow\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right).4+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)
\(\Leftrightarrow\sqrt[3]{9-x}-\sqrt[3]{7+x}=0\)
\(\Leftrightarrow\sqrt[3]{9-x}=\sqrt[3]{7+x}\)\(\Leftrightarrow9-x=7+x\)
\(\Leftrightarrow x=1\)
Vậy S={1}
a) ĐKXĐ: \(x^2-1\ge0\)
Đặt \(\sqrt{x^2-1}=t\left(t\ge0\right)\)
\(\Rightarrow t=t^2\Rightarrow t\left(t-1\right)=0\Rightarrow\left[{}\begin{matrix}t=0\\t=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=0\\\sqrt{x^2-1}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\right.\)
b) ĐKXĐ: \(x\ge2\)
Ta có: \(\sqrt{x-2}+\sqrt{x-3}\ge0\) mà \(\sqrt{x-2}+\sqrt{x-3}=-5< 0\Rightarrow\) không có x thỏa
c) \(\sqrt{x^2+4x+4}+\left|x-4\right|=0\)
\(\Rightarrow\left|x+2\right|+\left|x-4\right|=0\) mà \(\left|x+2\right|+\left|x-4\right|\ge0\Rightarrow\left\{{}\begin{matrix}x+2=0\\x-4=0\end{matrix}\right.\)
\(\Rightarrow\) không có x thỏa
1/\(\sqrt{x-4}-\sqrt{1-x}=1\)
Để Pt dc xác định
Thì\(\left\{{}\begin{matrix}x-4\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
Vì xét trên trục số ta thấy nó loại nhau
Nên Pt này vô nghiệm
1)ĐKXĐ: \(-4\le x\le1\)
\(\sqrt{x+4}-\sqrt{1-x}=1\\ \Rightarrow\sqrt{x+4}=\sqrt{1-x}+1\\ \Rightarrow x+4=1-x+2\sqrt{1-x}+1\\ \Rightarrow2x+2=2\sqrt{1-x}\\ \Rightarrow x+1=\sqrt{1-x}\\ \Rightarrow x^2+2x+1=1-x\\ \Rightarrow x^2+3x=0\\ \Rightarrow x\left(x+3\right)=0\\ \Rightarrow x=-3\)
Vậy x = -3
2)ĐKXĐ: \(-\sqrt{10}\le x\le\sqrt{10}\)
Với x = -3 thì:
0=0(luôn đúng)
Với x khác -3 thì:
\(\left(x+3\right)\sqrt{10-x^2}=x^2-x+12\\ \Rightarrow\left(x+3\right)\sqrt{10-x^2}=\left(x+3\right)\left(x-4\right)\\ \Rightarrow\sqrt{10-x^2}=x-4\\ \Rightarrow10-x^2=x^2-8x+16\\ \Rightarrow2x^2-8x+6=0\\ \Rightarrow x^2-4x+3=0\\ \Rightarrow\left(x-1\right)\left(x-3\right)=0\\ \Rightarrow x\in\left\{1;3\right\}\)
Vậy x\(\in\left\{-3;1;3\right\}\)
a) \(\sqrt{-x^2+x+4}=x-3\left(đk:x\ge3\right)\)
\(-x^2+x+4=x^2-6x+9\)
\(2x^2-7x-5=0\)
\(\Delta=49-4.2.\left(-5\right)=89\)
\(\left[{}\begin{matrix}x=\dfrac{7+\sqrt{89}}{4}\left(TM\right)\\x=\dfrac{7-\sqrt{89}}{4}\left(L\right)\end{matrix}\right.\)
b) \(\sqrt{-2x^2+6}=x-1\left(đk:x\ge1\right)\)
\(-2x^2+6=x^2-2x+1\)
\(3x^2-2x-5=0\)
\(\Delta=4+4.3.5=64\)
\(\left[{}\begin{matrix}x=\dfrac{2-8}{6}=-1\left(L\right)\\x=\dfrac{2+8}{6}=\dfrac{5}{3}\left(TM\right)\end{matrix}\right.\)
c) \(\sqrt{x+2}=1+\sqrt{x-3}\left(Đk:x\ge3\right)\)
\(x+2=1+x-3+2\sqrt{x-3}\)
\(\sqrt{x-3}=2\)
\(x-3=4\)
\(x=7\)
cho mik hỏi đề ở vế phải là \(\sqrt{x^4+1}hay\sqrt{x^4-1}??\)
Mình tự sửa lại đề , nếu không đúng thì sẵn sàng nhận gạch đá và thật sự xin lỗi !!
\(ĐKXĐ:x\ge1\)
Dễ thấy \(\left(x-1\right)\left(x^3+x^2+x+1\right)=x^4-1\)
Đặt \(\sqrt{x-1}=a\ge0\), \(\sqrt{x^3+x^2+x+1}=b>0\)
Khí đó \(\sqrt{x^4-1}=ab\)
Ta có phương trình
\(a+b=1+ab\Leftrightarrow\left(1-b\right)+\left(ab-a\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\Leftrightarrow\orbr{\begin{cases}a-1=0\\b-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}a=1\\b=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x-1=1\\x^3+x^2+x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x\left(x^2+x+1\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\left[do..x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\right]\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(TMĐK\right)\\x=0\left(loại\right)\end{cases}}\)
Vậy pt đã cho có nghiệm duy nhất x=2