Một hình lăng trụ đứng có chu vi đáy là 12 cm. Nếu tăng chiều cao thêm 2cm và giảm chu vi đáy đi 4cm thì diện tích xung quanh của hình lăng trụ đứng giảm 20 cm2. Tính diện tích xung quanh của hình lăng trụ đứng ban đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Thể tích là:
\(\frac{3x4}{2}\)x 9 = 54 cm3
Trong tam giác vuông ABC (vuông tại A), theo định lý Pytago, ta có cạnh huyền bằng:
\(\sqrt{3^2+4^2}\) = 5 cm
Diện tích xung quanh là:
(3 + 4 + 5) x 9 = 108 cm2
Diện tích toàn phần là:
108 + 3 x 4 = 120 cm2
b. Diện tích xung quanh là:
(3 + 4) x 2 x 5 = 70 cm2
Đáp số : 70 cm2
bán kính đáy của đáy là:
16 : 3,14 : 2 = 2,5477707 (cm)
diện tích đáy là:
(2,5477707)2 x 3,14 = 20,38216559 (cm2)
chiều cao là:
128 : 20,38216559 = 6,28 (cm)
Áp dụng định lí Py - Ta - Go , độ dài cạnh còn lại của mặt đáy tam giác là :
\(\sqrt{3^2+4^2}=5\left(cm\right)\)
Diện tích xung quanh hình lăng trụ đứng :
\(S_{xq}=\left(3+4+5\right).8=96\left(cm^2\right)\)
Diện tích toàn phần :
\(S_{tp}=96+\left(3.4\right)=108\left(cm^2\right)\)
Thể tích :
\(V=\dfrac{3.4}{2}.8=48\left(cm^3\right)\)
Gọi chiều cao h và cạnh đáy của hình lăng trụ đứng là a, ta có: Diện tích xung quanh của hình lăng trụ đứng là 120cm2 => Chu vi đáy của hình lăng trụ đứng là P = 120 : h Vì đáy của hình lăng trụ là tam giác đều nên có thể tính diện tích đáy bằng công thức: S = (a2 * √3) / 4 Vậy diện tích xung quanh của hình lăng trụ đều bằng: 120 = P * h = (a * √3) / 4 * h => a = 8√5 và h = 15√3 Vậy chiều cao của hình lăng trụ đứng đó là 15√3, độ dài cạnh đáy của hình lăng trụ là 8√5.
S xq=120cm2
=>h*3a=120cm2
=>h*a=40cm2
=>\(\left(h,a\right)\in\left\{\left(1;40\right);\left(2;20\right);\left(4;10\right);\left(5;8\right);\left(8;5\right);\left(10;4\right);\left(20;2\right);\left(40;1\right)\right\}\)