Cho tam giác ABC vuông ở A,đường phân giác CD(D thuộc AB).Gọi H là hình chiếu của B trên đường thẳng CD.Trên đường thẳng CD lấy điểm E sao cho H là trung điểm của đoạn thẳng ED.Gọi F là giao điểm của BH và CA.
a,C/M tam giác BHE = tam giác BHD và BF là phân giác của góc EBD
b,C/M góc FBA=góc FCH
c,C/M EB//FD
a, Xét 2 t.giác vuông BHE và BHD có:
HD=HE(gt)
HB cạnh chung
=> t.giác BHE=t.giác BHD(cạnh góc vuông- cạnh góc vuong)
=> \(\widehat{EBH}\)=\(\widehat{DBH}\)(2 góc tương ứng)
=> BH là p/g của \(\widehat{EBD}\)<=>BF là p/g của \(\widehat{EBD}\)