cho x\(^{^2}\)+y\(^{^2}\)=1.TImf gias tri nho nhat va loon nhat cua x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo câu trả lời của mình tại :
Câu hỏi của Nguyễn Tiến Duy - Toán lớp 7 - Học trực tuyến OLM
Vì \(\hept{\begin{cases}\left(x+5\right)^{2020}=x+\left(5^{1010}\right)^2≥0∀x\\\left|y-2021\right|≥0∀y\end{cases}}\Rightarrow A=\left(x+5\right)^{2020}+\left|y-2021\right|+2020\ge2020∀x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\y-2021=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=2021\end{cases}}\)
Ta có:\(\left(x+5\right)^{20}\ge0\)
\(\left|y-2021\right|\ge0\)
\(\Rightarrow A=\left(x+5\right)^{2020}+\left|y-2021\right|+2020\le2020\)
Dấu bằng xảy ra khi \(x+5=0\Rightarrow x=-5\) ; \(y-2021=0\Rightarrow y=2021\)
Vậy, GTNN của A =2020 khi x=-5; y=2021
Giá trị lớn nhất của x trong tập hợp giá trị của x là 11
Giá trị nhỏ nhất của y trong tập hợp giá trị của y là -89
GTLL của hiệu x-y là : 11 - (-89)=100
Giá trị nhỏ nhất của x trong tập hợp giá trị của x là :-2
Giá trị lớn nhất của y trong tập hợp giá trị của y là : 1
GTNN của hiệu x-y là : -2 -1=-3
Bài này lớp 7 bó tay vì 2 lý do: chưa học hằng đẳng thức và chưa học căn thức (quan trọng nhất)
Nói đến căn thức thì nó là chương trình lớp 9, mà chương trình lớp 9 thì ta giải luôn theo kiểu lớp 9 vì đằng nào cũng sử dụng căn thức của lớp 9 chắc ko ngại sử dụng thêm 1 BĐT của lớp 9:
Áp dụng BĐT \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\Rightarrow\left(x+y\right)^2\le2.1=2\)
\(\Rightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\) khi \(x=y=\frac{1}{\sqrt{2}}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\) khi \(x=y=-\frac{1}{\sqrt{2}}\)