Tìm x biết x chia -1/3^2=-1/3
A 1/3^3
B-1/3^3
C 1/3
D-1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
\(\)a: \(\left(x-2y\right)^3\)
\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=x^3-6x^2y+12xy^2-8y^3\)
b: \(\left(2x+y\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=8x^3+12x^2y+6xy^2+y^3\)
c: \(\left(\dfrac{1}{3}x-1\right)^3=\left(\dfrac{1}{3}x\right)^3-3\cdot\left(\dfrac{1}{3}x\right)^2\cdot1+3\cdot\dfrac{1}{3}x\cdot1^2-1^3\)
\(=\dfrac{1}{27}x^3-\dfrac{1}{3}x^2+x-1\)
d: \(\left(x+\dfrac{1}{3}y\right)^3\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{3}y+3\cdot x\cdot\left(\dfrac{1}{3}y\right)^2+\left(\dfrac{1}{3}y\right)^3\)
\(=x^3+x^2y+\dfrac{1}{3}xy^2+\dfrac{1}{27}y^3\)
e: (2x-3y)3
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot3y+3\cdot2x\cdot\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^3-36x^2y+54xy^2-27y^3\)
f: \(\left(x^2-2y\right)^3\)
\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2y+3\cdot x^2\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=x^6-6x^4y+12x^2y^2-8y^3\)
g: \(\left(\dfrac{1}{2}x-y\right)^3=\left(\dfrac{1}{2}x\right)^3-3\cdot\left(\dfrac{1}{2}x\right)^2\cdot y+3\cdot\dfrac{1}{2}x\cdot y^2-y^3\)
\(=\dfrac{1}{8}x^3-\dfrac{3}{4}x^2y+\dfrac{3}{2}xy^2-y^3\)
\(a,=27x^3+27x^2+9x+1\)
\(b,=\dfrac{x^3}{27}-\dfrac{x^2}{3}+x-1\)
\(c,=-\left(27x^3-27x^2y^2+9xy^4-y^6\right)\)
\(=-27x^3+27x^2y^2-9xy^4+y^6\)
\(d,=\dfrac{x^3}{y^3}-\dfrac{6x}{y}+\dfrac{12y}{x}-\dfrac{8y^3}{x^3}\)
a) \(\left(3x+1\right)^3=27x^3+27x^2+9x+1\)
b) \(\left(\dfrac{x}{3}-1\right)^3=\dfrac{x^3}{27}-\dfrac{x^2}{3}\)
c) \(\left(-y^2+3x\right)^3=27x^3-27x^2y^2+9xy^4-y^6\)
d) \(\left(\dfrac{x}{y}-\dfrac{2y}{x}\right)^3=\dfrac{x^3}{y^3}-\dfrac{6x}{y}+\dfrac{12y}{x}-\dfrac{8y^3}{x^3}\)
\(a,\left(x+3\right)^3=x^3+9x^2+27x+27\\ b,\left(\dfrac{1}{2}-x\right)^3=\dfrac{1}{8}-\dfrac{3}{4}x+\dfrac{3}{2}x^2-x^3\\ c,\left(2x-y^2\right)^3=8x^3-12x^2y^2+6xy^4-y^6\\ d,\left(2x-\dfrac{y^2}{x}\right)^3=8x^3-\dfrac{12x^2y^2}{x}+\dfrac{6xy^4}{x^2}-\dfrac{y^6}{x^2}\\ =8x^3-12xy^2+6y^4-\dfrac{y^6}{x^2}\)
2:
a: =>x-1/5=2/15
=>x=2/15+3/15=5/15=1/3
b: =>x+7/12=-5/6-2/6=-7/6
=>x=-14/12-7/12=-21/12=-7/4
c: =>x+2/3=-10/3
=>x=-4
d: =>1/4:x=-11/4
=>x=-1/4:11/4=-1/11
e: =>8:x=1,6
=>x=5
1. Tìm x: \(2^x+x^{x+3}=114\)
2.Cho \(a^3+b^3+c^3=0.\)Chứng tỏ \(a^3b^3+2b^3c^3+3b^3c^3+3a^3c^3\le0\)
Do 2x là số chẵn và 2x+xx+3=114
=>xx+3 là số chẵn =>x={0;2;4;...}
Với x=0 thì 20+03=114(L)
Với x=2 thì 22+25=114(L)
Với x=4 thì 24+47=144 (L)
Do x=4 thì vế trái > vế phải => x>4 thì vế trái càng lớn > vế phải
=>PT trên vô nghiệm
\(x:\left(\frac{-1}{3}\right)^2=\frac{-1}{3}\)
\(\Rightarrow x:\frac{1}{9}=\frac{-1}{3}\)
\(\Rightarrow x=\frac{-1}{3}.\frac{1}{9}\)
\(\Rightarrow x=\frac{-1}{27}=\frac{-1}{3}^3\)
Vậy chọn đáp án \(B\)