Cho a,b>0 và ab=1 Chứng minh (a^2/b)+b^2/a)+[8/a^2+b^2+6)]>=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
\(A=\frac{a^2}{b}+\frac{b^2}{a}+\frac{8}{a^2+b^2+6}=\frac{a^3+b^3}{ab}+\frac{8}{a^2+b^2+6}=a^3+b^3+\frac{8}{a^2+b^2+6}\)
\(A=\left(a+b\right)\left(a^2+b^2-ab\right)+\frac{8}{a^2+b^2+6}\ge2\sqrt{ab}\left(a^2+b^2-1\right)+\frac{8}{a^2+b^2+6}\)
\(A\ge2\left(a^2+b^2-1\right)+\frac{8}{a^2+b^2+6}=2a^2+2b^2-2+\frac{8}{a^2+b^2+6}\)
\(A\ge\frac{a^2+b^2+6}{8}+\frac{8}{a^2+b^2+6}+\frac{15}{8}\left(a^2+b^2\right)-\frac{11}{4}\)
\(A\ge2\sqrt{\frac{\left(a^2+b^2+6\right).8}{8\left(a^2+b^2+6\right)}}+\frac{15}{8}.2ab-\frac{11}{4}=3\)
Dấu "=" xảy ra khi \(a=b=1\)
a)Ta có a>0,b>0,a<b
Nhân cả 2 vế của a<b với a
=> a^2<ab ( vì a>0)
Nhân cả 2 vế của a<b với b
=> ab<b^2 ( vì b>0)
b)có a,b>0 , a<b
Bình phương a<b
=> a^2<b^2
a,b>0, a<b
=> a^3<b^3