K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

Lời giải:

Nếu $a,b,c$ đều là số nguyên tố lẻ thì $ab+bc+ac$ lẻ, mà $4d^2$ chẵn nên vô lý (loại)

Nếu $a,b,c$ có 1 chẵn, 2 lẻ thì $ab+bc+ac$ vẫn lẻ (loại)

Nếu $a,b,c$ có 2 chẵn, 1 lẻ thì không mất tính tổng quát, giả sử $a=b=2$ và $c$ lẻ thì:

$4+4c=4d^2$

$c+1=d^2$

$c=(d-1)(d+1)$. Vì $c$ nguyên tố nên $d-1=1$ và $d+1=c$

$\Rightarrow c=3$

Vậy $(a,b,c)=(2,2,3)$ và hoán vị.

Nếu $a,b,c$ đều chẵn thì $a=b=c=2$. Khi đó $d=\sqrt{3}\not\in\mathbb{Z}$ (vô lý)

 

9 tháng 8 2016

abc < ab+bc+ac 
<=> 1/a+1/b+1/c > 1 (*) 
giả sử a > b >c => 1/a < 1/b <1/c 
1 < 1/a +1/b +1/c < 1/c + 1/c + 1/c = 3/c => c < 3 => c = 2 
thay c = 2 vào (*) được: 
1/2 < 1/a + 1/b < 1/b + 1/b = 2/b => 2 < b < 4 => b = 3 
thay b = 3; c = 2 vào (*) được: 
1/a > 1 - 1/2 - 1/3 = 1/6 => 3 < a < 6 => a = 5 
vậy bộ số (a;b;c) = (2;3;5) và các hoán vị của nó

15 tháng 4 2019

Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

15 tháng 4 2019

https://diendantoanhoc.net/topic/133814-t%C3%ACm-t%E1%BA%A5t-c%E1%BA%A3-c%C3%A1c-b%E1%BB%99-3-s%E1%BB%91-nguy%C3%AAn-t%E1%BB%91-a-b-c-sao-cho-abc-abbcca/

Link nè bạn

26 tháng 11 2018

Ta có: 30 < ab + ba + ac < 289 (Ở đây mình không cần biết là các số có chữ số nào khác nhau hay không, mình chỉ cần lấy 10 x số số hạng và 99 x số số hạng là mình sẽ giới hạn được đáp án)

Do 30 < ab + ba + ac < 289 và tổng là các số nguyên tố nên ta có các tổng sau: 36; 49; 64; 81; 100; 121; 144; 169; 196; 289.

Ta xét tổng thì ta lại có: 10a + b + 10b + c + 10c + a = 11a + 11b + 11c = 11(a + b + c)
Suy ra tổng chia hết cho 11 => Tổng của chúng chỉ còn là 121

Bây giờ ta có ab + ba + ac = 121; a + b + c = 11 và các số ab, bc, ca là các số nguyên tố 

Vậy có các kết quả đúng là 13 + 37 + 71 = 121 với a = 1; b = 3; c = 7

                                        và 17 + 73 + 31 = 121 với a = 1; b = 7; c = 3

                                        và các đáp án đảo ngược khác như a = 3; b = 1; c = 7 ;...

29 tháng 3 2016

đáp án:a=2; b=3; c=5.Thử lại: abc = 2.3.5=30 ; ab+bc+ca = 2.3+3.5+5.2=31. 30 < 31 (thỏa mãn)

NV
14 tháng 4 2022

Bunhiacopxki:

\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)

\(\Rightarrow\dfrac{ab}{a^2+bc+ca}\le\dfrac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Tương tự: \(\dfrac{bc}{b^2+ca+ab}\le\dfrac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\)

\(\dfrac{ca}{c^2+ab+bc}\le\dfrac{ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

\(\Rightarrow VT\le\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\le\dfrac{a^2+c^2+c^2}{ab+bc+ca}\)

\(\Leftrightarrow ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)

Nhân phá và rút gọn 2 vế:

\(\Leftrightarrow a^3b+b^3c+c^3a\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{a^3b+b^3c+c^3a}{abc}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge a+b+c\)

Đúng do: \(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c\)

Ta sẽ chứng minh BĐT sau: a^2+b^2+c^2>=ab+ac+bc với mọi a,b,c

\(a^2+b^2+c^2>=ab+bc+ac\)

=>\(2a^2+2b^2+2c^2>=2ab+2bc+2ac\)

=>\(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2>=0\)

=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2>=0\)(luôn đúng)

a: ab+ac+bc>=3

mà a^2+b^2+c^2>=ab+ac+bc(CMT)

nên a^2+b^2+c^2>=3

Dấu = xảy ra khi a=b=c=1

Khi a=b=c=1 thì A=1+1+1+10=13

b: a^2+b^2+c^2<=8

Dấu = xảy ra khi \(a^2=b^2=c^2=\dfrac{8}{3}\)

=>\(a=b=c=\dfrac{2\sqrt{2}}{\sqrt{3}}=\dfrac{2\sqrt{6}}{3}\)

Khi \(a=b=c=\dfrac{2\sqrt{6}}{3}\) thì \(B=\dfrac{2\sqrt{6}}{3}\cdot3-5=2\sqrt{6}-5\)