K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 4 2019

\(\Delta'=\left(m-1\right)^2+m+3=m^2-m+4>0\)

Phương trình luôn có 2 nghiệm phân biệt

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

Để biểu thức xác định thì \(x_1x_2\ne0\Rightarrow m\ne-3\)

\(\frac{1}{x_1}+\frac{1}{x_2}\ge0\Leftrightarrow\frac{x_1+x_2}{x_1x_2}\ge0\)

\(\Leftrightarrow\frac{2\left(m-1\right)}{-\left(m+3\right)}\ge0\Leftrightarrow\frac{m-1}{m+3}\le0\)

\(\Rightarrow-3< m\le-1\)

c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)

\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)

\(=4m^2+8m+4-8m-4\)

\(=4m^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=2m+1\)

\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)

\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)

\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)

\(\Leftrightarrow16m^2-10m-17=0\)

\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)

2 tháng 4 2021

giúp e câu b nx

 

21 tháng 5 2017

Theo hệ thức Vi-ét ta có:

x1+x2=\(-\frac{-1}{1}=1\)

x1x2=\(\frac{1+m}{1}=1+m\)

=> x1x2(x1x2-2)=3(x1+x2)

<=> (1+m)(1+m-2)=3

<=> m2-1=3

<=>m2=4

<=> m=-2 hoặc m =2 (loại)

Vậy m = -2

a*c<0 nên pt luôn có hai nghiệm phân biệt

(2x1-x2)^2+x1-x2(x1+x2)=18

=>4x1^2-4x1x2+x2^2+x1-x2x1-x2^2=18

=>4x1^2-5x1x2+x1-18=0

=>4x1^2+x1-5*(-3)-18=0

=>4x1^2+x1-3=0

=>4x1^2+4x1-3x1-3=0

=>(x1+1)(4x1-3)=0

=>x1=-1 hoặc x1=3/4

=>x2=3 hoặc x2=-4

x1+x2=2m-2

=>2m-2=2 hoặc 2m-2=-13/4

=>m=2 hoặc m=-5/8

28 tháng 3 2020

phương trình: x^2-(m+1)x+2m-2=0 (1)

phương trình(1) là ptbh ẩn x có:đen ta = (-(m+1))^2 -4.1.(2m-2) =m^2+2m+1-8m+8 =m^2-6m+9 = (m-3)^2 với mọi m thuộc r

phương trình (1) có 2 nghiệm pb khi và chỉ khi đen ta lớn hơn 0 suy ra (m-3)^2 lớn hơn 0

khi và chỉ khi m-3  lớn hơn 0. ki và chỉ khi m lớn hơn 3.

theo hệ thức vi ét ta có x1+x2=m+1 (2) ;x1.x2=2m-2 (3)

có 3(x1+x2)-X1.X2=10 (4)

từ (2) (3) (4) suy ra 3(m+1)-(2m-2)=10

khi và chỉ khi 3m+3-2m+2=10

khi và chỉ khi m+5=10

khi và chỉ khi m=5

vậy khi m=5  thì pt(1) có 2n pb x1,x2 thỏa mãn 3(x1+x2)-x1.x2=10

28 tháng 3 2020

Cách 1:

Từ pt ta có:

\(\Delta=\left(m-3\right)^2>0\)

=>x1=(m-1-m+3)/2=1

->x2=(m-1+m-2)/2=(2m-3)/2

Bạn thay x1,x2 vào rồi tính nha tới đây thì đơn giản rồi.

Cách 2:

từ pt ta có:

\(\hept{\begin{cases}\Delta=\left(m-3\right)^2>0\\x_1+x_2=m-1\\x_1x_2=2-2m\end{cases}}\)

Bạn cũng thay vào rồi tính nha.

Đúng thì nhớ k cho mình nha.

16 tháng 4 2017

Phương trình (1) có 2 nghiệm x1; x2 ⇔ Δ ' = ( m + 1 ) 2 − m 2 ≥ 0 ⇔ 2 m + 1 ≥ 0 ⇔ m ≥ − 1 2  

Theo định lý Viét ta có x 1 + x 2 = 2 m + 2 x 1 x 2 = m 2  

Có  ( 2 ) ⇔ x 1 2 − 2 x 1 m + m 2 + x 2 = m + 2 ⇔ x 1 ( x 1 − 2 m ) + m 2 + x 2 = m + 2  

Thay x 1 − 2 m = 2 − x 2 ; m 2 = x 1 x 2  vào ta có x 1 ( 2 − x 2 ) + x 1 x 2 + x 2 = m + 2 ⇔ 2 x 1 + x 2 = m + 2  

Ta có hệ x 1 + x 2 = 2 m + 2 2 x 1 + x 2 = m + 2 ⇔ x 1 = − m x 2 = 3 m + 2 ⇒ m 2 = x 1 x 2 = − m ( 3 m + 2 ) ⇒ 4 m 2 + 2 m = 0 ⇔ m = 0 m = − 1 2  (thỏa mãn)

+ Với m = 0:  ( 1 ) ⇔ x 2 − 2 x = 0 ⇔ x 1 = 0 x 2 = 2  (thỏa mãn đề bài)

+ Với m = − 1 2 : ( 1 ) ⇔ x 2 − x + 1 4 = 0 ⇔ x 1 = x 2 = 1 2  (thỏa mãn đề bài)

Vậy m = 0 hoặc m = -1/2 là tất cả các giá trị m cần tìm.

 

14 tháng 4 2019

b) Theo hệ thức Vi-et ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Theo bài ra:

3 x 1  - x 2  = 8

⇔ 3 x 1  - x 2  = 2( x 1  +  x 2 )

⇔  x 1 = 3 x 2

Khi đó:  x 1  +  x 2  = 4 ⇔ 3 x 2  + x 2  = 4 ⇔ 4 x 2  = 4 ⇔  x 2  = 1

⇒  x 1  = 3

⇒  x 1 x 2  = 3 ⇒ m - 2 = 3 ⇔ m = 5

Vậy với m = 5 thì phương trình có 2 nghiệm thỏa mãn yêu cầu đề bài.

Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(m^2+1\right)\)

\(=\left(2m+2\right)^2-4\left(m^2+1\right)\)

\(=4m^2+8m+4-4m^2-4\)

=8m

Để phương trình có hai nghiệm phân biệt thì Δ>0

hay m>0

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=2m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_1=2m+3\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+3}{2}\\x_2=\dfrac{2m+3-2}{2}=\dfrac{2m+1}{2}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=m^2+1\)

\(\Leftrightarrow\dfrac{\left(2m+3\right)\left(2m+1\right)}{4}=m^2+1\)

\(\Leftrightarrow4m^2+2m+6m+3=4m^2+4\)

\(\Leftrightarrow8m=1\)

hay \(m=\dfrac{1}{8}\left(nhận\right)\)

23 tháng 2 2022

a, Thay m=0 vào pt ta có:

\(x^2-x+1=0\)

\(\Rightarrow\) pt vô nghiệm 

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

31 tháng 3 2023

a=1  

b=-2(m+1)

c=m2+2m

△'=(m+1)2-(m2+2m)1=m2+2m+1-m2-2m=1>0 ∀ m

=> pt luôn có 2n0 phân biệt ∀m