cho biểu thức A= 2n-1/2n+1(n thuộc z)
Tìm n thuộc z để A có GTLN
NHanh là có tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có A thuộc Z nên
\(2A=\frac{6n-2}{2n-1}=\frac{3\left(2n-1\right)+1}{2n-1}=3+\frac{1}{2n-1}\) nguyên khi 2n-1 là ước của 1
hay ta có : \(\orbr{\begin{cases}2n-1=-1\\2n-1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}2n-1=-1\\2n-1=1\end{cases}}\text{ hay }\orbr{\begin{cases}n=0\\n=1\end{cases}}\)
\(A=\dfrac{6n-2}{2n-1}=\dfrac{3\left(2n-1\right)+1}{2n-1}=3+\dfrac{1}{2n-1}\)
\(\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
2n-1 | 1 | -1 |
n | 1 | loại |
a: Để A là phân số thì \(2n+4\ne0\)
=>\(2n\ne-4\)
=>\(n\ne-2\)
b: Thay n=0 vào A, ta được:
\(A=\dfrac{3\cdot0-2}{2\cdot0+4}=\dfrac{-2}{4}=-\dfrac{1}{2}\)
Thay n=-1 vào A, ta được:
\(A=\dfrac{3\cdot\left(-1\right)-2}{2\cdot\left(-1\right)+4}=\dfrac{-5}{-2+4}=\dfrac{-5}{2}\)
Thay n=2 vào A, ta được:
\(A=\dfrac{3\cdot2-2}{2\cdot2+4}=\dfrac{4}{8}=\dfrac{1}{2}\)
c: Để A nguyên thì \(3n-2⋮2n+4\)
=>\(6n-4⋮2n+4\)
=>\(6n+12-16⋮2n+4\)
=>\(-16⋮2n+4\)
=>\(2n+4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(2n\in\left\{-3;-5;-2;-6;0;-8;4;-12;12;-20\right\}\)
=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;0;-4;2;-6;6;-10\right\}\)
a, bạn sửa lại đề nhé
b, \(C=\frac{2n+1}{4n+6}=\frac{4n+4}{4n+6}=\frac{4n+6-2}{4n+6}=1-\frac{2}{4n+6}=1-\frac{1}{2n+3}\)
\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
2n + 3 | 1 | -1 |
2n | -2 | -4 |
n | -1 | -2 |
\(D=\frac{2n+1}{n-3}=\frac{2\left(n+\frac{1}{2}\right)}{n-3}=\frac{2\left(n-3+\frac{7}{2}\right)}{n-3}\)
\(=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n - 3 | 1 | -1 | 7 | -7 |
n | 4 | 2 | 10 | -4 |
a,Với \(n\in Z\)ta có \(2n+1\in Z;n-3\in Z\)
Do đó để \(A=\frac{2n+1}{n-3}\)là phân số thì \(n-3\ne0\Rightarrow n\ne3\)
Vậy với n thuộc Z và n khác 3 thì A là phân số
b,\(A=\frac{2n+1}{n-3}=\frac{2\left(n-3\right)+1+6}{n-3}=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\)
Để A nguyên
\(\Rightarrow7⋮n-3\Rightarrow n-3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow n\in\left\{4;2;10;-4\right\}\)
Vậy..........................
a) A là phân số khi và chỉ khi mẫu 2n - 1 khác 0
Nhưng do n thuộc Z nên 2n - 1 luôn khác 0 với mọi n
Vậy A luôn là phân số với n thuộc Z
\(A=\frac{2n-1}{2n+1}=\frac{2n+1-2}{2n+1}=1-\frac{2}{2n+1}\)
Để A có GTLN \(\Leftrightarrow\frac{2}{2n+1}\) có GTNN
\(\Leftrightarrow2n+1\) là số nguyên âm nhỏ nhất nhất
n=-.....