C=/x^2+x+3/+/x^2+x-6/
Tim GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F=|x+2|+|x+4|+|x+6| = ( |x+2|+|x+6) + |x+4| = ( |x+2|+|-x-6) + |x+4|
ta có \(\hept{\begin{cases}\left|x+2\right|+\left|-x-6\right|\ge\left|x+2-x-6\right|=4\\\left|x+4\right|\ge0\end{cases}}\)
=> F > 4+0=4
=> Fmin=4
<=> x+4=0 => x=-4
mấy câu còn lại tương tự
\(P=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(P=\left(x^2+5x\right)^2-36\)
\(P=\left[x\left(x+5\right)\right]^2-36\)
Vậy GTNN của P = -36 khi x = 0 hoặc -5.
A=[(x-1)(x+6)][(x+2)(x+3)]
=(x2+5x-6)(x2+5x+6)
=(x2+5x)2-36
Ta thấy (x2+5x)2 >=0 nên (x2+5x)2-36 >=-36
Vậy GTNN của A là -36
\(\left|x-1\right|+2C=\left|x-1,5\right|+\left|1-x\right|\\ \Leftrightarrow\left|x-1\right|+2C=\left|x-1,5\right|+\left|x-1\right|\\ \Rightarrow2C=\left|x-1,5\right|\ge0\\ \Rightarrow C\ge0\)
Để C=0 thì
\(\left|x-1,5\right|=0\\ \Leftrightarrow x-1,5=0\\ \Leftrightarrow x=1,5\)
Vậy...
cái này sai r mk xóa nhé
Đề full ko phải vệ,có lẽ bạn đó viết quá gần
https://hoc24.vn/hoi-dap/question/815591.html
Bạn tham khảo
a) 3 x^2 - 6x - 1
= 3 ( x^2 - 2x - 1/3 )
= 3 ( x^2 - 2x + 1 - 4/3)
= 3 [ ( x- 1 )^2 - 4/3)
=3 ( x- 1 )^2 - 4
Vì 3 ( x- 1 )^2 >=0 => 3 ( x- 1 )^2 - 4 >= 4
VẬy GTNN là 4 khi x- 1 = 0 => x = 1
b ) ( x- 1 )( x +2 )( x+ 3 )( x+6 )
= ( x - 1 )( x+ 6 )( x+ 2 )( x+ 3 )
= ( x^2 + 5x - 6 ) . ( x^2 + 5x + 6 )
Đặt x^2 + 5x = t ta có :
= ( t- 6 )( t+ 6 )
= t^2 - 36
Vì t^2 >=0 => t^2 -36 >= -36
VẬy GTNN là -36 khi x ^2 + 5x = 0 => x = 0 hoặc x = 5
Nhớ ****
a, 1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 + (-2) ≥ (-2) => A ≥ -2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)
Vậy GTNN A = -2 khi x = 2019 và y = 1
2, Ta có: |x - 3| = |3 - x|
Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1
=> C ≥ 1 - 5 => C ≥ -4
Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0
+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)
+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)
Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3
b,
1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9
Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5
Vậy GTLN B = 9 khi x = 5 hoặc x = -5
2, Đk: x ≠ 5
\(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)
Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6
=> \(D=1+1=2\)
Vậy GTLN của D = 2 khi x = 6
giup vs
_khó wá ak!!!1111