Tính D = \(\frac{-1}{3}.\left(1+2+3\right)-\frac{1}{4}.\left(1+2+3\right)-.............-\frac{1}{50}.\left(1+2+3\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}{\left( {\frac{{ - 1}}{2}} \right)^5} = \frac{{{{\left( { - 1} \right)}^5}}}{{{2^5}}} = \frac{{ - 1}}{{32}};\\{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \frac{{16}}{{81}};\\{\left( { - 2\frac{1}{4}} \right)^3} = {\left( {\frac{{ - 9}}{4}} \right)^3} = \frac{{{{\left( { - 9} \right)}^3}}}{{{4^3}}} = \frac{{-729}}{{64}};\\{\left( { - 0,3} \right)^5} = {\left( {\frac{{ - 3}}{{10}}} \right)^5} = \frac{{ - 243}}{{100000}};\\{\left( { - 25,7} \right)^0} = 1\end{array}\)
b)
\(\begin{array}{l}{\left( { - \frac{1}{3}} \right)^2} = \frac{1}{9};\\{\left( { - \frac{1}{3}} \right)^3} = \frac{{ - 1}}{{27}};\\{\left( { - \frac{1}{3}} \right)^4} = \frac{1}{{81}};\\{\left( { - \frac{1}{3}} \right)^5} = \frac{{ - 1}}{{243}}.\end{array}\)
Nhận xét:
+ Luỹ thừa của một số hữu tỉ âm với số mũ chẵn là một số hữu tỉ dương.
+ Luỹ thừa của một số hữu tỉ âm với số mũ lẻ là một số hữu tỉ âm.
a: \(=\dfrac{5}{3}\left(-16-\dfrac{2}{7}+28+\dfrac{2}{7}\right)=\dfrac{5}{3}\cdot12=20\)
b: \(=\left(4\cdot\dfrac{3}{4}-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17=\dfrac{1}{2}\cdot\dfrac{6}{5}-17=\dfrac{3}{5}-17=-\dfrac{82}{5}\)
c: \(=-\left(\dfrac{1}{3}\right)^{50}\cdot3^{50}-\dfrac{2}{3}\cdot\dfrac{1}{4}=-1-\dfrac{1}{6}=-\dfrac{7}{6}\)
e: \(=5.7\left(-6.5-3.5\right)=-5.7\cdot10=-57\)
\(\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right).\left(\frac{1}{5^2}-1\right)...\left(\frac{1}{50^2}-1\right)\)
\(=\frac{-8}{3^2}.\frac{-15}{4^2}.\frac{-24}{25}...\frac{-2499}{50^2}\)
\(=\frac{8}{3^2}.\frac{15}{4^2}.\frac{24}{5^2}...\frac{2499}{50^2}\) (vì có 48 thừa số âm nên kết quả là dương)
\(=\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}...\frac{49.51}{50.50}\)
\(=\frac{2.3.4...49}{3.4.5...50}.\frac{4.5.6...51}{3.4.5...50}\)
\(=\frac{2}{50}.\frac{51}{3}\)
\(=\frac{1}{25}.17=\frac{17}{25}\)