Tìm GTLN của x^2/ x^4+x^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
b1: x+2y=1 => x=1-2y
P=4xy=4y(1-2y)=4y-8y2
Ta có: y2>=0(với mọi x)
=>8y2>=0(với mọi x)
=>-8y2<=0(với mọi x)
=>4y-8y2<=4y(với mọi x) hay P<=4y(với mọi x)
Do đó, GTLN của P là 4y khi:y=0
Vậy GTLN của P là 0
b3: Ta có: x^4>=0(với mọi x)
=>x^4+4>=4(với mọi x)
=>x^2/(x^4+4)<=x^2/4(với mọi x) hay A<=x^2/4(với mọi x)
Do đó, GTLN của A là x^2/4 khi x=0
Vậy GTLN của A là 0 tại x=0
b4:\(M=x-2.\sqrt{x-5}\)
Ta có: \(\sqrt{x-5}\)>=0(với mọi x)
=>2.\(\sqrt{x-5}\)>=0(với mọi x)
=>-2.\(\sqrt{x-5}\)<=0(với mọi x)
=>x-2.\(\sqrt{x-5}\)<=x(với mọi x) hay M<=x(với mọi x)
Do đó, GTLN của M là x tại \(\sqrt{x-5}\)=0
x-5=0
x=0+5=5
Vậy GTLN của M là 5 tại x=5
Bài 1:thay x= 1-2y vào biểu thức P=4xy ta có:
P= 4(1-2y)y= -8\(y^2\)+4y=-8(\(y^2\)-\(\frac{y}{2}\))= -8[(\(y^2\)-2.y.\(\frac{1}{4}\)+\(\left(\frac{1}{4}\right)^2\))-\(\left(\frac{1}{4}\right)^2\)]
=-8[\(\left(y-\frac{1}{4}\right)^2\)-\(\frac{1}{16}\)]=-8.\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)
Ta có -8\(\left(y-\frac{1}{4}\right)^2\)\(\le\)0
=> P=-8\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)\(\le\)\(\frac{1}{2}\)
Vậy P đạt giá trị lớn nhất là \(\frac{1}{2}\) dấu = xảy ra khi y-\(\frac{1}{4}\)=0=> y=\(\frac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT:\(a^2+b^2\ge2ab\)(dấu "=" xảy ra khi a=b) với a=x^2,b=1 có:
\(x^4+1\ge2x^2\Leftrightarrow x^{\text{4}}+x^2+1\ge3x^2\)
\(\Leftrightarrow\frac{x^2}{x^{\text{4}}+x^2+1}\le\frac{x^2}{3x^2}=\frac{1}{3}\)
Dấu "=" xảy ra khi \(x^2=1\Leftrightarrow x=1\)
Vậy maxA=1/3 khi x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn ơi đề là M = \(\dfrac{x^2+x+1}{x^2+4}\) hay M = \(\dfrac{x^2+x+1}{x^2}+4\) vậy bn?
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\dfrac{2x^2}{x^4+x^2+1}=\dfrac{6x^2}{3\left(x^4+x^2+1\right)}=\dfrac{2\left(x^4+x^2+1\right)-2x^4+4x^2-2}{3\left(x^4+x^2+1\right)}\)
\(A=\dfrac{2}{3}-\dfrac{2\left(x^2-1\right)^2}{3\left(x^4+x^2+1\right)}\le\dfrac{2}{3}\)
\(A_{max}=\dfrac{2}{3}\) khi \(x^2=1\)
ĐK tồn tại A với mọi x
A=x2−x+1x2+x+1=x2+x+1−2xx2+x+1=1+−2xx2+x+1=1+B (*)
Thay vì tìm GTNN & LN của B ta đi tìm GTNN,LN của B
B=−2xx2+x+1
Tìm Max2−B=2−−2xx2+x+1=2x2+2x+2+2xx2+x+1=2(x2+2x+1)x2+x+1=2(x+1)2(x+12)2+34≥0
=>2−B≥0⇒B≤2⇒A≤2+1=3đẳng thức khi Tim Min
B+23=−2xx2+x+1+23⇔−6x+2x2+2x+23(x2+x+1)=2(x2−2x+1)3(x2+x+1)=2(x−1)23[(x+12)2+34]≥0
B+23≥0⇒B≥−23⇒A≥1−23=13 đẳng thức khi x=-1
Kết luận:
GTNN A=1/3 khi x=1
GTLN A=3 khi x=-1
P/S: Sai thoy nha