A B C z y m x 130 145 50 chứng tỏ Ax // By tìm x để By // Cz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vẽ tia By' là tia đối của tia By
Ta có:
∠ABy' + ∠ABy = 180⁰ (kề bù)
⇒ ∠ABy' = 180⁰ - ∠ABy
= 180⁰ - 135⁰
= 45⁰
⇒ ∠ABy' = ∠BAx = 45⁰
Mà ∠ABy' và ∠BAx là hai góc so le trong
⇒ By // Ax
b) Ta có:
∠CBy' = ∠ABC - ∠ABy'
= 75⁰ - 45⁰
= 30⁰
⇒ ∠CBy' = ∠BCz = 30⁰
Mà ∠CBy' và ∠BCz là hai góc so le trong
⇒ By // Cz
Ta có ax + by = c ; by + cz = a
<=> cz - ax = a - c (1)
mà cz + ax = b (2)
Từ (1) và (2) => \(cz=\frac{a-c+b}{2}\Rightarrow z=\frac{a-c+b}{2c}\Rightarrow z+1=\frac{a+b+c}{2c}\)
=> \(\frac{1}{z+1}=\frac{2c}{a+b+c}\)
Tương tự ta có \(\frac{1}{x+1}=\frac{2a}{a+b+c}\); \(\frac{1}{y+1}=\frac{2b}{a+b+c}\)
=> P = \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)
Cộng vế với vế của ba đẳng thức ta đc :
\(x+y+z=2\left(ax+by+cz\right)\Rightarrow ax+by+cz=\frac{x+y+z}{2}\) (*)
Lấy (*) - (1) ta có : \(ax+by+cz-\left(by+cz\right)=\frac{x+y+z}{2}-x\)
<=> \(ax=\frac{y+z-x}{2}\Leftrightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{y+z-x}{2x}+1=\frac{x+y+z}{2x}\)
=> \(\frac{1}{a+1}=\frac{2x}{x+y+z}\)
CMTT với 1/b+1 và 1/c+1
=> ĐPCM
Vì \(x=by+cz\)
\(\Rightarrow by=x-cz\)
Mà \(z=ax+by\)
\(\Rightarrow by=z-ax\)
\(\Rightarrow x-cz=z-ax\left(=by\right)\)
\(\Rightarrow x+ax=z+cz\)
\(\Rightarrow x\left(a+1\right)=z\left(c+1\right)\)
Cũng có :
\(z=ax+by\)
\(\Rightarrow ax=z-by\)
\(y=ax+cz\)
\(\Rightarrow ax=y-cz\)
\(\Rightarrow z-by=y-cz\left(=ax\right)\)
\(\Rightarrow z+cz=y+by\)
\(\Rightarrow z\left(c+1\right)=y\left(b+1\right)\)
\(\Rightarrow x\left(a+1\right)=y\left(b+1\right)=z\left(c+1\right)\)
Đặt \(x\left(a+1\right)=y\left(b+1\right)=z\left(c+1\right)=k\)
\(\Rightarrow3k=x\left(a+1\right)+y\left(b+1\right)+z\left(c+1\right)\)
Có :
\(Q=\frac{1}{a+1}+\frac{1}{1+b}+\frac{1}{c+1}\)
\(=\frac{x}{x\left(a+1\right)}+\frac{y}{y\left(b+1\right)}+\frac{z}{z\left(c+1\right)}\)
\(=\frac{x}{k}+\frac{y}{k}+\frac{z}{k}\)
\(=\frac{x+y+z}{k}\)
\(=\frac{3\left(x+y+z\right)}{3k}\)
Mà \(3k=x\left(a+1\right)+y\left(b+1\right)+z\left(c+1\right)\)
\(\Rightarrow Q=\frac{3\left(x+y+z\right)}{x\left(a+1\right)+y\left(b+1\right)+z\left(c+1\right)}\)
\(=\frac{3\left(x+y+z\right)}{xa+x+by+y+zc+z}\)
\(=\frac{3\left(x+y+z\right)}{\left(x+y+z\right)+\left(xa+by+zc\right)}\)
\(=\frac{3\left(x+y+z\right)}{\left(x+y+z\right)+\frac{1}{2}\left[\left(xa+by\right)+\left(xa+zc\right)+\left(by+zc\right)\right]}\)
Có \(x+y+z=\left(ax+by\right)+\left(by+cz\right)+\left(ax+cz\right)\)
\(\Rightarrow Q=\frac{3\left(x+y+z\right)}{\left(x+y+z\right)+\frac{1}{2}\left(x+y+z\right)}\)
\(=\frac{3\left(x+y+z\right)}{\frac{3}{2}\left(x+y+z\right)}\)
\(=\frac{3}{\frac{3}{2}}\)
\(=2\)
Vậy \(Q=2.\)
Đặt \(A=\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+cz\left(z-x\right)}\)
Từ ax+by+cz=0
=>(ax+by+cz)2=0
=>a2x2+b2y2+c2z2+2axby+2bycz+2czax=0
=>a2x2+b2y2+c2z2=-2(ax+by+byca+czax)
Xét mẫu thức: \(ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2\)
\(=ab\left(x^2-2xy+y^2\right)+bc\left(y^2-2yz+z^2\right)+ca\left(z^2-2zx+x^2\right)\)
\(=abx^2-2abxy+aby^2+bcy^2-2bcyz+bcz^2+caz^2-2cazx+cax^2\)
\(=\left(abx^2+bcz^2\right)+\left(aby^2+acz^2\right)+\left(acx^2+bcy^2\right)-2\left(abxy+bcyz+cazx\right)\)
\(=\left(aby^2+acz^2\right)+\left(abx^2+bcz^2\right)+\left(acx^2+bcy^2\right)+a^2x^2+b^2y^2+c^2z^2\)
\(=\left(a^2x^2+aby^2+acz^2\right)+\left(abx^2+b^2y^2+bcz^2\right)+\left(acx^2+bcy^2+c^2z^2\right)\)
\(=a\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+c\left(ax^2+by^2+cz^2\right)\)
\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)
Do đó: \(A=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2018}}=2018\) (dpcm)
giúp mình với
bn có ghi sai đề bài ko đó , tui thấy nó hơi sai sai