K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 4 2019

Do \(1992.x^{1993}\) luôn chẵn, mà 1995 lẻ \(\Rightarrow1993.y^{1994}\) lẻ

\(\Rightarrow y\) lẻ \(\Rightarrow y^{997}\) lẻ\(\Rightarrow\)đặt \(y^{997}=2k+1\)

Phương trình trở thành:

\(1992.x^{1993}+1993\left(2k+1\right)^2=1995\)

\(\Leftrightarrow1992.x^{1993}+1993\left(4k^2+4k\right)+1993=1995\)

\(\Leftrightarrow4\left(498x^{1993}+1993\left(k^2+k\right)\right)=1995-1993=2\)

Vế trái chia hết cho 4, vế phải ko chia hết cho 4 \(\Rightarrow\) pt vô nghiệm

Vậy ko có cặp số nguyên nào thỏa mãn

1 tháng 2 2021

\(2x+3y=7 \\ \Leftrightarrow x=\dfrac{-7-3y}{2} \)

PT có nghiệm nguyên \(\Leftrightarrow -7-3y \vdots 2 \\ \Leftrightarrow (-7-3y \in Ư(2) \\ \Leftrightarrow -7-3y \in {-2;2;-1;1} \\ \Leftrightarrow y \in {\dfrac{-5}{3} (L) ; -3(TM); -2(TM) ; \dfrac{-8}{3} (L)} \)

- Với \(y=-3\) có: \(x=1\).

- Với \(y=-2\) có: \(x=\dfrac{-1}{2} (L)\)

Vậy \((x;y)=(-3;1)\) là nghiệm nguyên duy nhất của phương trình.

1 tháng 2 2021

- Nếu sai thì cứ báo cáo + xóa ạ. =(((

6 tháng 8 2023

Xét \(y=0\Rightarrow x=\pm8\)

Với \(y\ge1\), ta thấy \(x⋮6\) và \(y⋮2\) (vì nếu \(y\) lẻ thì \(3^y\) chia 4 dư 3, vô lí)

\(x=3k,y=2l\left(k,l\inℤ,l\ge2\right)\) (nếu \(l=1\) thì \(y=2\Rightarrow x^2=72\), vô lí)

pt đã cho trở thành \(k^2=3^{2l-2}+7\) 

\(\Leftrightarrow k^2-\left(3^{l-1}\right)^2=7\)

\(\Leftrightarrow\left(k+3^{l-1}\right)\left(k-3^{l-1}\right)=7\)

Do \(k+3^{l-1}>k-3^{l-1}\) nên ta xét 2TH

TH1: \(\left\{{}\begin{matrix}k+3^{l-1}=7\\k-3^{l-1}=1\end{matrix}\right.\). Cộng theo vế  \(\Rightarrow2k=8\Rightarrow k=4\Rightarrow x=3k=12\) \(\Rightarrow3^y=x^2-63=144-63=81\Rightarrow y=4\)

Vậy ta tìm được cặp \(\left(x,y\right)=\left(12,4\right)\), thử lại thấy thỏa mãn.

TH2: \(\left\{{}\begin{matrix}k+3^{l-1}=-1\\k-3^{l-1}=-7\end{matrix}\right.\)

Cộng theo vế \(\Rightarrow2k=-8\Rightarrow k=-4\Rightarrow x=-12\)

\(\Rightarrow3^y=x^2-63=144-63=81\Rightarrow y=4\)

Vậy ta tìm được thêm cặp số \(\left(x;y\right)=\left(-12;4\right)\). Như vậy, pt đã cho có các nghiệm nguyên \(\left(x;y\right)\in\left\{\left(\pm8;0\right);\left(\pm12;4\right)\right\}\)

NV
8 tháng 2 2022

Em tham khảo ở đây:

Tìm nghiệm nguyên dương của phương trình sau: \(3^x-2^y=1\)   - Hoc24

6 tháng 3 2020

\(2xy+6x-y=2020\)

\(\Leftrightarrow2x\left(y+3\right)-\left(y+3\right)=2017\)

\(\Leftrightarrow\left(2x-1\right)\left(y+3\right)=2017=2017.1=1.2017\)

\(=\left(-2017\right).\left(-1\right)=\left(-1\right).\left(-2017\right)\)

Lập bảng:

\(2x-1\)\(2017\)\(1\)\(-1\)\(-2017\)
\(y+3\)\(1\)\(2017\)\(-2017\)\(-1\)
\(x\)\(1009\)\(1\)\(0\)\(-1008\)
\(y\)\(-2\)\(2014\)\(-2020\)\(-4\)

Vậy phương trình có 4 cặp nghiệm nguyên \(\left(1009;-2\right);\left(1;2014\right);\left(0;-2020\right);\left(-1008;-4\right)\)

NV
24 tháng 1 2022

- Với \(x=1\Rightarrow y=1\)

- Với \(x>1\Rightarrow y>1\)

\(\Rightarrow3^x=2^y+1\)

Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)

Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm) 

\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)

\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)

\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)

\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)

Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)

14 tháng 11 2024

dòng 3 dưới lên sao lại suy ra 2^a = 2 ạ

NV
7 tháng 9 2021

\(\Leftrightarrow4x^2-4xy+y^2=16-3y^2\)

\(\Leftrightarrow16-3y^2=\left(2x-y\right)^2\ge0\)

\(\Rightarrow y^2\le\dfrac{16}{3}\)

\(\Rightarrow y^2=\left\{1;4\right\}\)

\(\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)

- Với \(y=1\Rightarrow4x^2-4x+4=16\Leftrightarrow x^2-x-3=0\) (ko có x nguyên thỏa mãn)

- Với \(y=2\Rightarrow4x^2-8x=0\Rightarrow x=2\)

Vậy \(\left(x;y\right)=\left(2;2\right)\)

7 tháng 9 2021

cô chấm bài các bạn đi cô

15 tháng 1 2018

Ta có: x(x3 - x + 6) > 9

⇔ x4 - x2 + 6x - 9 > 0

⇔ f(x) > 0

thấy f(x) > 0 khi

Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Vậy tập nghiệm của bất phương trình là 

Giải bài 11 trang 107 SGK Đại Số 10 | Giải toán lớp 10