Tìm tất cả các giá trị củ m để hàm số y=-mx4-(m-2)x2-m2 có cực đại, cực tiểu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
TH1: suy ra hàm số có điểm cực đại nhận m=0.
TH2: .
Theo yêu cầu bài toán
.
Vậy là giá trị cần tìm.
Đáp án A
Phương pháp giải:
Tìm tọa độ điểm cực trị của đồ thị hàm số trùng phương và tính diện tích tam giác
Lời giải: TXĐ : D = R
Ta có R
Phương trình
Hàm số có 3 điểm cực trị ó (*) có 2 nghiệm phân biệt khác
Khi đó
Gọi ; là ba điểm cực trị. Tam giác ABC cân tại A.
Trung điểm H của BC là
Và
Diện tích tam giác ABC là
Mà R suy ra
Vậy Smax = 1 Dấu bằng xảy ra khi và chỉ khi m = 0
Chọn C
[Phương pháp tự luận]
Hàm số có cực đại , cực tiểu khi và chỉ khi m < 1
Tọa độ điểm cực trị A ( 0 ; m + 1 )
Phương trình đường thẳng BC: y + m 4 - 2 m 2 - m = 0
Vậy S đạt giá trị lớn nhất ⇔ m = 0
[Phương pháp trắc nghiệm]
Vậy S đạt giá trị lớn nhất ⇔ m = 0
Chọn A
Để hàm số có ba cực trị thì trước hết hàm số phải là hàm số trùng phương tức m ≠ 0
Ta có:
Hàm số có 3 cực trị khi và chỉ khi y ' có 3 nghiệm phân biệt
⇔ m 2 - 9 2 m < 0 ⇔ m ( m 2 - 9 ) < 0
Vậy các giá trị cần tìm của m là
Chọn A
Ta có:
Hàm số y = m x 4 + m 2 - 25 x 2 + 2 có một cực đại và hai cực tiểu
Mà m ∈ Z ⇒ m ∈ 1 ; 2 ; 3 ; 4
Tổng các giá trị của m thỏa mãn là: 10
\(\left\{{}\begin{matrix}m\ne0\\\left(-m\right).\left(-m+2\right)< 0\end{matrix}\right.\) \(\Rightarrow0< m< 2\)