tìm \(n\in N\)sao cho \(n^2+3n+n+3\text{là số nguyên tố}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=n^4-3n^3+4n^2-3n+3=\left(n^2+1\right)\left(n^2-3n+3\right)\)
Do \(n^2+1>1;\forall x\in Z^+\) nên N là số nguyên tố khi và chỉ khi:
\(\left\{{}\begin{matrix}n^2-3n+3=1\\n^2+1\text{ là số nguyên tố}\end{matrix}\right.\)
\(n^2-3n+3=1\Leftrightarrow n^2-3n+2=0\Rightarrow\left[{}\begin{matrix}n=1\\n=2\end{matrix}\right.\)
Với \(n=1\Rightarrow n^2+1=2\) là SNT (thỏa mãn)
Với \(n=2\Rightarrow n^2+1=5\) là SNT (thỏa mãn)
a)Để n+3/n-2 thuộc Z
=>n+3 chia hết n-2
=>n-2+5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {3;1;7;-3}
a)Để \(\frac{\text{n+3}}{\text{n-2}}\) \(\in\) Z
=> n+3 chia hết n-2
=> (n-2) +5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
Ta có:
n -2 | 1 | -1 | -5 | 5 |
n | 3 | 1 | -3 | 7 |
\(3n+2⋮3n-5\)
\(3n-5+7⋮3n-5\)
\(7⋮3n-5\)hay \(3n-5\inƯ\left(7\right)=\left\{1;7\right\}\)
3n - 5 | 1 | 7 |
3n | 6 | 12 |
n | 2 tm | 4 tm |
n2+3n+n+3=n(n+3)+(n+3)=(n+1)(n+3)
Để n2+3n+n+3 là số nguyên tố thì 1 trong 2 số phải bằng 1, số còn lại là số nguyên tố =:>n+1=1(vì n+3>n+1)
=>n=0
n2+3n+n+3 = n(n+1)+3.(n+1) = (n+3).(n+1)
nếu n+3 và n+1 >1 thì (n+3)(n+1) có các ước là n+3;n+1;1;(n+3)(n+1)=> không phải số nguyên tố
=>n+3 hoặc n+1 =1
nếu n+3 = 1 => n= -2 . mà n\(\in\)N
=> n+1 phải bằng 1 => n = 0