Cho a > b. Hãy so sánh a/2015 và b/2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{ ta có: }\frac{a}{b}=\frac{a.\left(b+2015\right)}{b.\left(b+2015\right)}=\frac{a.b+2015.a}{b^2+2015.b}\)
\(\frac{a+2015}{b+2015}=\frac{b.\left(a+2015\right)}{b.\left(b+2015\right)}=\frac{a.b+2015.b}{b^2+2015.b}\)
Nếu a>b thì :
\(a.b+2015.a>a.b+2015.b\Rightarrow\frac{a.b+2015.a}{b^2+2015.b}>\frac{a.b+2015.b}{b^2+2015.b}\)
hay \(\frac{a}{b}>\frac{a+2015}{b+2015}\)
Nếu a=b thì:
\(a.b+2015.a=a.b+2015.b\Rightarrow\frac{a.b+2015.a}{b^2+2015.b}=\frac{a.b+2015.b}{b^2+2015.b}\)
hay \(\frac{a}{b}=\frac{a+2015}{b+2015}\)
Nếu a<b thì:
a.b+2015.a<a.b+2015.b \(\Rightarrow\frac{a.b+2015.a}{b^2+2015.b}<\frac{a.b+2015.b}{b^2+2015.b}\)
hay \(\frac{a}{b}<\frac{a+2015}{b+2015}\)
\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{\left(2015+2016\right)}{\left(2016+2017\right)}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
\(A=\frac{2015}{2016}+\frac{2016}{2017}=1-\frac{1}{2016}+1-\frac{1}{2017}>1\)
\(B=\frac{2015+2016}{2016+2017}< \frac{2016+2017}{2016+2017}=1\)
Suy ra \(A>B\).
\(A=1+2+2^2+...+2^{2015}>2^{2015}=B\)
\(\Rightarrow A>B\)
P.s: đề sai đúng ko bạn :v
\(A=2^{2014.2015}.5^{2014.2015}\)
\(B=2^{2015.2014}.5^{2015.2014}\)
Vậy A = B
A = 2010 . 2020 + 10 và B = 2015 . 2015 + 10
A = 2010 . 2020 + 10
A = 2010 . ( 2015 + 5 ) + 10
A = 2010 . 2015 + 2010 . 5 + 10
B = 2015 . 2015 + 10
B = (2010 + 5) . 2015+ 10
B = 2010.2015 + 2015.5 + 10
Vì 2010.5 < 2015.5 nên A < B
A = 2015 . 2020 - 1
A = ( 2010 + 5 ) . 2020 - 1
A = 2010 . 2020 + 2020 . 5 - 1
B = 2010 . 2025 - 1
B = 2010 . ( 2020 + 5 ) - 1
B = 2010 . 2020 + 2010 . 5 - 1.
Vì 2020.5 > 2010.5 nên A > B.
( Dấu chấm là dấu nhân nha bạn )
a/2015 >b/2015 (vi ban nhan ca 2 ve bdt a>b voi 1 so duong la 1/2015 nen bdt khong doi chieu)