\(\frac{1}{20x23}\)+\(\frac{1}{23x26}\)+...+\(\frac{1}{77x80}\)< \(\frac{1}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/20*23+1/23*26+...+1/77*80
=1/3(1/20-1/23+1/23-1/26+...+1/77-1/80)
=1/3*3/80=1/80<1/79
Đặt \(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\) ta có :
\(A=3\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(A=3.\frac{3}{80}\)
\(A=\frac{9}{80}< 1\) ( tử bé hơn mẫu )
Vậy \(A< 1\)
Chúc bạn học tốt ~
đặt A=9/20x23+9/23x26+...+9/77x80
<=>\(A=3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right)\)
\(\Rightarrow A=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(\Rightarrow A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(\Rightarrow A=3\cdot\frac{3}{80}\)
\(\Rightarrow A=\frac{9}{80}\)
đặt A=32/20x23+32/23x26+...+32/77x80
\(A=3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=3\cdot\frac{3}{80}\)
\(=\frac{9}{80}\)
\(=\frac{1}{3}x\left(\frac{3}{1x4}+\frac{3}{4x7}+...+\frac{3}{77x80}\right)\)
\(=\frac{1}{3}x\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}x\left(\frac{1}{1}-\frac{1}{80}\right)\)
\(=\frac{1}{3}\times\frac{79.}{80}\)
\(=\frac{79}{240}\)
Tk giúp mk nha cảm ơn !!
\(P=\frac{1}{5x8}+\frac{1}{8x11}+.....+\frac{1}{602x605}\)
\(\Rightarrow3P=\frac{3}{5x8}+\frac{3}{8x11}+......+\frac{3}{602x605}\)
\(\Rightarrow3P=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-.....+\frac{1}{602}-\frac{1}{605}\)
\(\Rightarrow3P=\frac{1}{5}-\frac{1}{605}\)
\(\Rightarrow3P=\frac{24}{121}\)
\(\Rightarrow P=\frac{24}{121}:3\)
\(\Rightarrow P=\frac{8}{121}\)
\(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}\)
\(=\frac{1}{3}\left[\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right]\)
\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{23}+...+\frac{1}{77}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\left[\frac{4}{80}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\cdot\frac{3}{80}=\frac{1}{1}\cdot\frac{1}{80}=\frac{1}{80}\)
Mà \(\frac{1}{80}< \frac{1}{9}\)nên \(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}< \frac{1}{9}\)
Vậy : ...
\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)
\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\)
\(=\frac{1}{80}< \frac{1}{9}\)