K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

\(A=\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}>\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{10\cdot11}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{4}-\frac{1}{11}=\frac{7}{44}\)

Kết luận : ....

9 tháng 4 2019

Ta có  : \(\frac{1}{4^2}< \frac{1}{3.4}\)

           \(\frac{1}{5^2}< \frac{1}{4.5}\)

\(................................\)

        \(\frac{1}{10^2}< \frac{1}{9.10}\)

\(\Rightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(\Rightarrow A< \frac{1}{3}-\frac{1}{4} +\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow A< \frac{1}{3}-\frac{1}{10}=\frac{7}{30}\)

Mà \(\frac{7}{30}< \frac{7}{44}\)=> \(A< \frac{7}{44}\)(đpcm)

Chúc bn hok tốt ^.^

\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...\frac{1}{9}-\frac{1}{10}\)

=> \(A< \frac{1}{4}-\frac{1}{10}=\frac{3}{30}=\frac{21}{210}\)

Ta lại có \(\frac{7}{44}=\frac{21}{132}>\frac{21}{210}\)

=> \(A< \frac{7}{44}\)

16 tháng 5 2017

A=\(\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=1+\frac{3}{10^8-3}\)

\(10^8-1>10^8-3\)

\(\Rightarrow\frac{3}{10^8-1}< \frac{3}{10^8-3}\)

\(\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)

Vậy \(A< B\)

6 tháng 4 2017

a, ta xét:

\(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

\(\frac{5}{6}< \frac{6}{7}\)

.....

\(\frac{99}{100}< \frac{100}{101}\)

=>\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)

hay:A<B(đpcm)

b,\(A.B=\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.....\frac{100}{101}\)

\(=\frac{1.2.3....100}{2.3.4....101}=\frac{1}{101}\)

c,vì A<B (theo phần a)

=>A.A<B.A

Mà B.A=\(\frac{1}{101}\)

=>A2<101

Mà A2=\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)

=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{101}\)<\(\frac{1}{100}=\frac{1}{10^2}\)

=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{10^2}\)

=>\(\frac{1}{2}.\frac{3}{4}....\frac{99}{100}< \frac{1}{10}\)

Hay A<\(\frac{1}{10}\)

22 tháng 10 2017

gfgdjgbhfgbjbfdgbhjdgfhdgfd

29 tháng 7 2015

a, Xét 1/2 < 2/3 ; 3/4<4/5 ; ............ ; 99/100<100/101

=> 1/2.3/4.......99/100 < 2/3.4/5.........100/101

=> M<N


b, M.N = 1/2.3/4.4/5......99/100.2/3.4/5.5/6......100/101

M.N = 1/2.2/3.3/4.4/5.............99/100.100/101

M.N = 1/101


c, Vì M<N nên M.M < M.N Hay M.M < 1/101 < 1/100

                                           hay M.M < 1/10 . 1/10

=> M < 1/10 (Đpcm)

26 tháng 2 2017

 a) Ta có M.N = 1/2.2/3.3/4.4/5....99/10.10/101 = 1/101 
b) Xét M và N đều gồm 50 thừa số mà: 
1/2 < 2/3 
3/4 < 4/5 
............. 
99/100 < 100/101 
=> M < N 
c) Do M < N nên => M.M < M.N (Nhân 2 vế với M) 
=> M.M < 1/101 (Vì M.N = 1/101 theo cma) 
Mặt khác 1/101 < 1/100 
=> M.M < 1/100 = 1/10.1/10 
=> M < 1/10

12 tháng 10 2020

a.\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}+\sqrt{n}\right)\)

áp dụng công thức cho biểu thức A có A>\(2\left(-\sqrt{2}+\sqrt{26}\right)>7\left(1\right)\)

(so sánh bình phương 2 số sẽ ra nha)

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

áp dụng công thức cho biểu thức A ta CM được

A<\(2\left(\sqrt{2}-\sqrt{2-1}+\sqrt{3}-\sqrt{3-1}+...+\sqrt{25}-\sqrt{25-1}\right)\)

=\(2\left(-\sqrt{1}+\sqrt{25}\right)=2\left(-1+5\right)=2\cdot4=8\left(2\right)\)

từ (1) và (2) => ĐPCM

b. tương tự câu a ta CM đc BT đã cho=B>\(2\sqrt{51}-2\)> \(5\sqrt{2}\left(1\right)\)

và B<\(2\sqrt{50}=\sqrt{2}\cdot\sqrt{2\cdot50}=10\sqrt{2}\left(2\right)\)

từ (1) và (2)=>ĐPCM

(bạn nhớ phải biến đổi 1 thành 1/\(\sqrt{1}\) trc khi áp dụng công thức nha)

MỜI BẠN THAM KHẢO