Ai giúp mình câu này vs:
Tìm x,y biết : x3 + 2x = 2018 - y2
Mong các bạn giúp :>>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(a>0\) thì \(\left|a\right|+a=a+a=2a⋮2\)
Với \(a=0\) thì \(\left|a\right|+a=0+0=0⋮2\)
Với \(a< 0\) thì \(\left|a\right|+a=-a+a=0⋮2\)
Vậy với mọi a thì \(\left|a\right|+a⋮2\)
Ta có :\(\left|y-x\right|+\left|z-y\right|+\left|x-z\right|=2017^x+2018^x\)
\(\Rightarrow\left|y-z\right|+y-z+\left|z-y\right|+z-y+\left|x-z\right|+x-z=2017^x+2018^x\)
Vế trái chia hết cho 2 mà vế phải \(2018^x+2017^x\) không chia hết cho 2(vô lí)
Vậy không có x,y,z thỏa mãn
giải dùm bn thoi chứ h mk k cần vì mk có kinh nghiem ke hứa nhieu
k bao gio giu loi hua
2x -3x +5x = 3/3 - 4/4 + 12/5
4x = 1-1 + 12/5
x = 3/5
Đề thế này hả e
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\)
\(\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Leftrightarrow6x-3y=2x+y\)
\(\Leftrightarrow4x=4y\)
\(\Leftrightarrow x=y\)
Vậy.....
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Leftrightarrow6x-3y=2x+2y\)
\(\Leftrightarrow4x=5y\)
\(\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)
Vậy....
a làm lại nhé, nãy sai
\(\left|x+6\right|-9=2x\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+6-9=2x\\x-6+9=2x\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-2x=-6+9\\x-2x=6-9\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}-x=3\\-x=-3\end{array}\right.\)
Vậy \(x=-3\)
a)2 + 5 + 11 + ... + 47+ 95
Tính chất : 5 = 2.2 + 1
11 = 5.2 + 1
Vậy các số của dãy là: 2 + 5 + 7 + 11 + 23 + 47 + 95
= (2 + 5 + 7) + (5 + 95) + (23 + 47)
= 14 + 100 + 70
= 184
1)\(6x-x^2=x\left(6-x\right)\)
2)\(5x^2z-15xyz+30xz^2=5x\left(xz-3y+6z\right)\)
3)\(x^3-6x^2+9x=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
Câu 1:
(2x + 1) + (2x + 2) + ... + (2x + 2015) = 0
=> 2x + 1 + 2x + 2 + ... + 2x + 2015 = 0
=> 2015.2x + (1 + 2 + ... + 2015) = 0
=> 4030x + (2015 + 1).2015:2 = 0
=> 4030x + 2031120 = 0
=> x = -504
Câu 2:
x - y = 8; y - z = 10; x + z = 12
=> (x - y) + (y - z) = 8 + 10 = 18
=> x - z = 18
=> x = (12 + 18) : 2 = 15
=> z = 15 - 18 = -3
=> y = 15 - 8 = 7
=> x + y + z = 15 + 7 + (-3) = 19
\(\left(X^2+2x+1\right)+\left(4y^2+\frac{4.1y}{4}+\frac{1}{16}\right)+2-\frac{1}{16}.\)
\(\left(x+1\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)
\(x^2+4y^2+2x-y+2\)
\(=\left(x^2+2x+1\right)+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{15}{16}\)
\(=\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(2y-\frac{1}{4}\right)\ge0\forall y\end{cases}\Rightarrow\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\ge\frac{15}{16}}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(2y-\frac{1}{4}\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}}\)
Vậy GTNN của \(x^2+4y^2+2x-y+2=\frac{15}{16}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}\)
Tham khảo nhé~