K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

A B C E D 1 2 2 1 1 2 z x y

a, Do DE//BC

=> \(\widehat{A_1}=\widehat{ABC}\)( so le trong )

   Vì \(\widehat{BAz}\)là góc ngoài tam giác ABC

=> \(\widehat{BAz}=\widehat{ABC}+\widehat{ACB}\)

 \(\Rightarrow\widehat{A_1}+\widehat{A_2}=\widehat{ABC}+\widehat{ACB}\)

Do  \(\widehat{A_1}=\widehat{ABC}\)( chứng minh trên )

 \(\Rightarrow\widehat{A_2}=\widehat{ACB}\)

  Mà góc ABC = góc ACB ( tam giác ABC cân ở A )

=> \(\widehat{A_1}=\widehat{A_2}\)

 => Ax là tia phân giác góc BAz

Hay Ax là phân giác góc ngoài đỉnh A của tam giác ABC

b, Vì \(\widehat{A_2}=\widehat{CAE}\)( 2 góc đối đỉnh)

Mà \(\widehat{A_2}=\widehat{A_1}\)(cmt)

 \(\Rightarrow\widehat{A_1}=\widehat{CAE}\)

\(\Rightarrow\widehat{A_1}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}\)

\(\Rightarrow\widehat{DAC}=\widehat{EAB}\)

      Vì góc ABC = góc ACB ( tam giác ABC cân )

=> \(\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)

                Xét tam giác DAC và tam giác EAB có:

                                   \(\widehat{ACD}=\widehat{ABE}\)( chứng minh trên )

                                       AC = AB  ( tam giác ABC cân )

                                  \(\widehat{DAC}=\widehat{EAB}\)( chứng minh trên )

=> \(\Delta DAC=\Delta EAB\)( g-c-g )

=> DA = EA

Vẽ tia AG là tia đối của tia AC

Ta có: \(\widehat{FAB}=\widehat{ABC}\)(hai góc so le trong, AF//BC)

\(\widehat{GAF}=\widehat{ACB}\)(hai góc đồng vị, AF//BC)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{BAF}=\widehat{GAF}\)

hay Ax là tia phân giác của góc ngoài tại đỉnh A(đpcm)

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>MF=ME

=>M là trung điểm của EF

=>BD=CE

28 tháng 12 2018

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

31 tháng 5 2019

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD