Tìm 1 nghiệm của đa thức F(x) =x^2 -2004x + 2003
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=2003 nên x+1=2004
\(A\left(x\right)=x^{21}-x^{20}\left(x+1\right)+x^{19}\left(x+1\right)-...+x\left(x+1\right)-1\)
\(=x^{21}-x^{21}-x^{20}+x^{20}+...+x^2+x-1\)
=x-1=2002
1. F(-1) = 2.(-1)2 – 3. (-1) – 2 = 2.1 + 3 – 2 = 3
F(0) = 2. 02 – 3 . 0 – 2 = -2
F(1) = 2.12 – 3.1 – 2 = 2 – 3 – 2 = -3
F(2) = 2.22 – 3.2 – 2 = 8 – 6 – 2 = 0
Vì F(2) = 0 nên 0 là 1 nghiệm của đa thức F(x)
2. Vì đa thức E(x) có hệ số tự do bằng 0 nên có một nghiệm là x = 0.
a: f(1)=0
=>a+b+c=0(luôn đúng)
b: f(x)=0
=>5x^2-6x+1=0
=>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
a. Ta có: f(0) = 02 - 4 = 0 - 4 = -4
f(2) = 22 - 4 = 4 - 4 = 0
f(-1) = (-1)2 - 4 = -1 - 4 = -5
b. Ngiệm của đa thức f(x) là 2 (vì f(2) = 0)
a) f(x) =\(^{x^2}\)-4
Thay x=o vào đa thức ta được
f(0)=\(0^2\)-4=-4
Thay x=2 vào đa thức ta được
f(2) =\(2^2\)-4=0
Thay x=-1 vào đa thức ta được
f(-1) =\(-1^2\)-4 =-3
f(x)= x2- 2003x -x+2003
= x(x-2003) - (x-2003)
= (x-2003)(x-1)
vậy nghiệm của đa thức là 1 và 2003
cách giải khác ta có f(x)=Ax2+Bx+C
với A=1 ; B=-2004 ; C=2003
ta có A+B+C=1-2004+2003=0
=)) pt có nghiệm là 1 và C/A
hay nghiệm là 1 và 2003