K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

kho nhi

8 tháng 4 2019

Tham khảo tại đây nhé bạn:

Câu hỏi của Trang Huyen Trinh - Toán lớp 6 - Học toán với OnlineMath

Câu hỏi của Trang Huyen Trinh - Toán lớp 6 - Học toán với OnlineMath

31 tháng 3 2018

Ta có : 

\(\left(x-7\right)\left(y+3\right)< 0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-7< 0\\y+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\y>-3\end{cases}}}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-7>0\\y+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\y< -3\end{cases}}}\)

Vậy hoặc \(x< 7\) và \(y>-3\) hoặc \(x>7\) và \(y< -3\)

Chúc bạn học tốt ~ 

2 tháng 3 2016

x-2y+y=0

<=>x-y=0

x=y

Mà mình thấy hình như sai đề thì phải

2 tháng 3 2016

x-2y+y=0

=>x-y=0

=>x=y

vậy với mọi x,y thuộc Z,x=y thì đều thỏa mãn ycđb

a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m>\dfrac{1}{2}>0\)

Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0

ở bước đầu giải hệ theo m, bạn ko nên nhân với m vì nếu m=0 thì sẽ không giải được