Tim x,y,z\(\in\)N sao cho 0<x\(\le y\le z\)va xy+yz+zx=xyz
Mk can gap
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(x-7\right)\left(y+3\right)< 0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-7< 0\\y+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\y>-3\end{cases}}}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-7>0\\y+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\y< -3\end{cases}}}\)
Vậy hoặc \(x< 7\) và \(y>-3\) hoặc \(x>7\) và \(y< -3\)
Chúc bạn học tốt ~
x-2y+y=0
<=>x-y=0
x=y
Mà mình thấy hình như sai đề thì phải
x-2y+y=0
=>x-y=0
=>x=y
vậy với mọi x,y thuộc Z,x=y thì đều thỏa mãn ycđb
a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow m>\dfrac{1}{2}>0\)
Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0
kho nhi
Tham khảo tại đây nhé bạn:
Câu hỏi của Trang Huyen Trinh - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của Trang Huyen Trinh - Toán lớp 6 - Học toán với OnlineMath