K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

A=1+(1/2 + 1/3 + 1/4)+(1/5 + 1/6 + 1/7 + 1/8)+(1/9+...+1/16)+(1/17+...+1/32)+(1/33+...+1/64)

A>1+(1/2 + 1/4 + 1/4)+(1/8+ 1/8+ 1/8+ 1/8)+(1/16+1/16+...+1/16)+(1/64+...+1/64)

A>1 + 1 + 1/2 + 1/2 + 1/2+ 1/2

A>4

13 tháng 4 2019

cảm ơn nha

28 tháng 7 2018

\(=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{32}\right)+\left(\frac{1}{33}+...+\frac{1}{64}\right)\)

\(=1+\frac{1}{2}+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32\)

\(=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

\(=1+\frac{1}{2}.6\)

\(=1+3\)

\(=4\)

~~ Bố thí cái li.ke ~~

19 tháng 1 2016

cách giải nhé các bạn

19 tháng 1 2016

cách giải đâu, bt cô giao mà

22 tháng 5 2015

Ta có : \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)<\frac{1}{5}+\frac{1}{12}\times3+\frac{1}{60}\times3\)\(S<\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

\(\Rightarrow S<\frac{1}{2}\)

22 tháng 5 2015

Ta có:

\(S=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)

\(=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)

Bài toán phụ 1:

Ta có:

1/13<1/12

1/14<1/12

1/15<1/12

=>1/13+1/14+1/15<1/12x3=1/4 (1)

Bài toán phụ 2:

Ta có:

1/61<1/60

1/62<1/60

1/63<1/60

=>1/61+1/62+1/63<1/60x3=1/20 (2)

Từ (1) và (2), ta có:

1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/5+1/4+1/20

1/5+1/13+1/14+1/15+1/61+1/62+1/63<4/20+5/20+1/20

1/5+1/13+1/14+1/15+1/61+1/62+1/63<9/20<1/2

=>1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2