K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 4 2019

\(M=x^2+\frac{y^2}{4}+\frac{1}{4}-xy-x+\frac{y}{2}+\frac{3y^2}{4}+\frac{y}{2}+\frac{3}{4}\)

\(M=\left(x-\frac{y}{2}-\frac{1}{2}\right)^2+\frac{3}{4}\left(y+1\right)^2\ge0\)

\(\Rightarrow M_{min}=0\) khi \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

14 tháng 10 2015

rất tiếc em mới học lớp 6

20 tháng 1 2022

dhgxkkkkkkkkkkkkkkkkkkkkk

20 tháng 1 2022

jnymrjd,5

AH
Akai Haruma
Giáo viên
31 tháng 5 2019

Lời giải:

Áp dụng BĐT Cauchy cho các số dương:

\(x^2+1\geq 2x\); \(y^2+1\geq 2y\)

\(\Rightarrow M=x^2+y^2+\frac{3}{x+y+1}\geq 2x+2y-2+\frac{3}{x+y+1}\)

hay \(M\geq \frac{5}{3}(x+y)-\frac{7}{3}+\frac{x+y+1}{3}+\frac{3}{x+y+1}\)

Tiếp tục áp dụng BĐT Cauchy:

\(\frac{x+y+1}{3}+\frac{3}{x+y+1}\geq 2\)

\(x+y\geq 2\sqrt{xy}=2\)

Do đó: \(M\geq \frac{5}{3}.2-\frac{7}{3}+2=3\)

Vậy GTNN của $M$ là $3$. Dấu "=" xảy ra khi $x=y=1$

12 tháng 3 2021

\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5}{16}\left(2x+y\right)\ge2\sqrt{\dfrac{3}{16}.3}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\).

Đẳng thức xảy ra khi x = 1; y = 2.

NV
12 tháng 3 2021

\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)

\(M=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5\left(2x+y\right)}{16}\ge2\sqrt{\dfrac{9\left(2x+y\right)}{16\left(2x+y\right)}}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{11}{4}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)

14 tháng 3 2021

Ta có:

\(M=\dfrac{2x+y}{xx}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)

\(=\left(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\right)+\dfrac{5}{8}\dfrac{2x+y}{2}\)

Có: \(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\ge2\sqrt{\dfrac{3}{8}\dfrac{2x+y}{2}\dfrac{3}{2x+y}}=\dfrac{3}{2}\)

Dấu '=' xảy ra \(\Leftrightarrow\dfrac{3}{8}\dfrac{2x+y}{2}=\dfrac{3}{2x+y}\)

Có: \(\dfrac{5}{8}\dfrac{2x+y}{2}\ge\dfrac{5}{8}\sqrt{2xy}=\dfrac{5}{4}\)

Dấu '=' xảy ra \(\Leftrightarrow2x=y,xy=2\)

\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\)

Dấu '=' xảy ra \(\Leftrightarrow x=1,y=2\)

Vậy GTNN của M là \(\dfrac{11}{4}\Leftrightarrow x=1,y=2\)

14 tháng 3 2021

\(M=\dfrac{2x+y}{xy}\)

9 tháng 5 2018

Mk sửa lại đề bài nha : x + y = 1

Ta viết lại biểu thức M dưới dạng :

M = \(\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{9}{3\left(x+y+1\right)}\)

Áp dụng BĐT Cô - Si dạng Engel vào bài toán , ta có :

\(\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{9}{3\left(x+y+1\right)}\)\(\dfrac{\left(x+y+3\right)^2}{1+1+3\left(x+y+1\right)}=\dfrac{16}{8}=2\)

⇒ MMin = 2 ⇔ x = y = \(\dfrac{1}{2}\)