Cho hai số x,y thỏa mãn điều kiện 3x + y = 1
Tính giá trị nhỏ nhất của biểu thức A= 3x2 + y2
Mọi người giúp mình với ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Từ giả thiết ta có
ln x + y + 1 + 3 x + y + 1 = ln 3 x y + 3.3 x y (*)
Xét f t = ln t + 3 t hàm trên 0 ; + ∞ , ta có f ' t = 1 t + 3 > , ∀ t > 0
Do đó * ⇔ x + y + 1 = 3 x y ⇔ 3 x y − 1 = x + y ≥ 2 x y ⇔ 3 xy − 2 x y − 1 ≥ 0
Suy ra x y ≥ 1 ⇒ x y ≥ 1.
Ta có: 3x + y = 1 => y = 1 - 3x
=> M = 3x2 + y2 = 3x2 + (1-3x)2
= 3x2 + 1 - 6x + 9x2
= 12x2 - 6x + 1
= 12.(x2 -\(\frac{1}{2}x\) + \(\frac{1}{12}\))
= 12.((x2 - 2. \(\frac{1}{4}x\)+ \(\frac{1}{16}\)) - \(\frac{1}{16}\)+ \(\frac{1}{12}\))
= 12.((x-\(\frac{1}{4}\))2 + \(\frac{1}{48}\))
= 12. (x-\(\frac{1}{4}\))2 + \(\frac{1}{4}\)
=> M \(\ge\)\(\frac{1}{4}\)
Dấu ''='' xảy ra khi: (x - \(\frac{1}{4}\))2 = 0 => x = \(\frac{1}{4}\)
Vậy Mmin= \(\frac{1}{4}\)khi x= \(\frac{1}{4}\)
\(x+y=1\Rightarrow x=1-y\)
\(C=x^2+y^2+xy=\left(1-y\right)^2+y^2+\left(1-y\right)y\)
\(=y^2-y+1\)\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)
=>minC=\(\dfrac{3}{4}\) \(\Leftrightarrow y=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{2}\)
Ta có :
\(x+y=1\Rightarrow\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+2xy+y^2=1\)
\(\Leftrightarrow x^2+xy+y^2=1-xy\ge1-\left(\dfrac{x+y}{2}\right)^2=1-\dfrac{1}{4}=\dfrac{3}{4}\)
Hay \(C \ge \dfrac{3}{4}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Ta có: \(3x+y-1=0\)
\(\Rightarrow3x+y=1\)
Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có:
\(\left(3x^2+y^2\right)\left(3+1\right)=\left[\left(\sqrt{3}x\right)^2+y^2\right]\left[\left(\sqrt{3}\right)^2+1^2\right]\ge\left(\sqrt{3}x.\sqrt{3}+y.1\right)^2\)
\(\Leftrightarrow4B\ge1^2\)
\(\Leftrightarrow B\ge\frac{1}{4}\)
Dấu = xảy ra khi \(\frac{\sqrt{3}x}{\sqrt{3}}=\frac{y}{1}\Rightarrow x=y=\frac{1}{4}\)
Vậy........