K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

Đáp án C.

Từ giả thiết ta có

  ln x + y + 1 + 3 x + y + 1 = ln 3 x y + 3.3 x y   (*)

Xét  f t = ln t + 3 t  hàm trên  0 ; + ∞ , ta có  f ' t = 1 t + 3 > , ∀ t > 0

Do đó  * ⇔ x + y + 1 = 3 x y ⇔ 3 x y − 1 = x + y ≥ 2 x y ⇔ 3 xy − 2 x y − 1 ≥ 0

Suy ra  x y ≥ 1 ⇒ x y ≥ 1.

7 tháng 5 2021

Giúp mik đi, làm ơn T_T

27 tháng 12 2018

Ta có: 3x + y = 1 => y = 1 - 3x

=> M = 3x2 + y2 = 3x2 + (1-3x)2 

         = 3x2 + 1 - 6x + 9x2 

         = 12x2 - 6x + 1

         = 12.(x2 -\(\frac{1}{2}x\) + \(\frac{1}{12}\))

         = 12.((x2 - 2. \(\frac{1}{4}x\)\(\frac{1}{16}\)) - \(\frac{1}{16}\)\(\frac{1}{12}\))

         = 12.((x-\(\frac{1}{4}\)) + \(\frac{1}{48}\))

           = 12. (x-\(\frac{1}{4}\))2 + \(\frac{1}{4}\)     

=> M     \(\ge\)\(\frac{1}{4}\)

Dấu ''='' xảy ra khi: (x - \(\frac{1}{4}\))2 = 0 => x = \(\frac{1}{4}\)

Vậy Mmin= \(\frac{1}{4}\)khi x= \(\frac{1}{4}\)

20 tháng 2 2018

Chọn đáp án A

21 tháng 5 2021

\(x+y=1\Rightarrow x=1-y\) 

\(C=x^2+y^2+xy=\left(1-y\right)^2+y^2+\left(1-y\right)y\)

\(=y^2-y+1\)\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)

=>minC=\(\dfrac{3}{4}\) \(\Leftrightarrow y=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{2}\)

Ta có :

\(x+y=1\Rightarrow\left(x+y\right)^2=1\)

\(\Leftrightarrow x^2+2xy+y^2=1\)

\(\Leftrightarrow x^2+xy+y^2=1-xy\ge1-\left(\dfrac{x+y}{2}\right)^2=1-\dfrac{1}{4}=\dfrac{3}{4}\)

Hay \(C \ge \dfrac{3}{4}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

14 tháng 12 2017

Ta có: \(3x+y-1=0\)

\(\Rightarrow3x+y=1\)

Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có: 

 \(\left(3x^2+y^2\right)\left(3+1\right)=\left[\left(\sqrt{3}x\right)^2+y^2\right]\left[\left(\sqrt{3}\right)^2+1^2\right]\ge\left(\sqrt{3}x.\sqrt{3}+y.1\right)^2\)

\(\Leftrightarrow4B\ge1^2\)

\(\Leftrightarrow B\ge\frac{1}{4}\)

Dấu = xảy ra khi \(\frac{\sqrt{3}x}{\sqrt{3}}=\frac{y}{1}\Rightarrow x=y=\frac{1}{4}\)

Vậy........

30 tháng 6 2019

Đáp án C

14 tháng 4 2017