Cho ∆MNP biết MP > MN; MD là trung tuyến thuộc NP. Trên tia MP lấy E sao cho D là trung điểm của ME. C/m: Góc MEP > góc EMP
Mm gúp mk vs, ai làm đúng mk tik cho!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(MN+MP=34\)
\(MN-MP=14\)
\(\Rightarrow2MP=34-14=20\)
\(\Rightarrow MP=10\left(cm\right),MN=34-10=24\left(cm\right)\)
\(Pytago:\)
\(NP=\sqrt{10^2+24^2}=26\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}MN+MP=34\\MN-MP=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2MN=48\\MP+MN=34\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MN=24\\MP=10\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(NP^2=MN^2+MP^2\)
\(\Leftrightarrow NP^2=10^2+24^2=676\)
hay NP=26(cm)
Vậy: MN=10cm; MP=24cm; NP=26cm
Vì \(\Delta{MNP}=\Delta{DEF}\)
\( \Rightarrow DE = MN;EF = NP;DF = MP\) (các cạnh tương ứng)
\( \Rightarrow NP = 6cm\)
\( \Rightarrow \) Chu vi tam giác MNP là:
C = MN + MP + NP = 4 + 5 + 6 = 15 (cm)
Đối diện cạnh MN là góc P
Đối diện cạnh NP là góc M
Đối diện cạnh MP là góc NMà MP>NP>MN(6cm>5cm>4cm)=>góc N>M>Pa: Xét ΔHNM vuông tại H và ΔMNP vuôg tại M có
góc N chung
=>ΔHNM đồng dạng với ΔMNP
b: NP=căn 3^2+4^2=5cm
MH=3*4/5=2,4cm
NH=3^2/5=1,8cm
c; Đề bài yêu cầu gì?
a, Áp dụng định lý Pytago vào tam giác MNP
\(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có \(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{6\times8}{10}=4,8\left(cm\right)\)
b, Áp dụng định lý Pytago vào tam giác MNP
\(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{9^2+16^2}=\sqrt{337}\left(cm\right)\)
Ta cs
\(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{9\times16}{\sqrt{337}}\approx7,8\left(cm\right)\)
c, \(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2}=\sqrt{5}\left(cm\right)\)
Ta có \(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{\sqrt{2}\times\sqrt{3}}{\sqrt{5}}=\dfrac{\sqrt{30}}{5}\left(cm\right)\)