1) Tính nhanh:
P=\(1\frac{1}{3}\cdot1\frac{1}{8}\cdot1\frac{1}{15}\cdot1\frac{1}{24}\cdot1\frac{1}{35}\cdot1\frac{1}{48}\cdot1\frac{1}{63}\cdot1\frac{1}{80}\)
2) So sánh:
A=\(\frac{100^{10}+1}{100^{10}-1}\) và B=\(\frac{100^{10}-1}{100^{10}-3}\)
3) So sánh A và B biết:
A=\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
B=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
#It's the moment when you're in good mood, you accidentally click back =.=
1) Calculate
\(P=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}....1\frac{1}{63}.1\frac{1}{80}\)
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{64}{63}.\frac{81}{80}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{8.8}{7.9}.\frac{9.9}{8.10}\)
\(=\frac{2.9}{10}=\frac{9}{5}\)
ta có: 10010 + 1 > 10010 - 1
⇒ A = \(\frac{100^{10}+1}{100^{10}-1}< \frac{100^{10}+1-2}{100^{10}-1-2}=\frac{100^{10}-1}{100^{10}-3}=B\)
vậy A < B