K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

a)\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}+c^2-c+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)

Xảy ra khi \(a=b=c=\frac{1}{2}\)

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+1\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)

\(\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}=\frac{\frac{\left(a+b\right)^2}{4}}{2}>\frac{\frac{1}{4}}{2}=\frac{1}{8}\)

c)\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\)

Khi a=b

6 tháng 4 2016

abc = 1 mới đúng nhớ, nếu đúng thế thì mình mới giải!

22 tháng 4 2016

Mình học lớp 7 nên chỉ làm được phần b, thôi

b, * Nếu x=1 thì: 

1+1=2

* Nếu x=2 thì:

2+ 1/2 >2

* Nếu x>2 

=> x + 1/x   >   2 ( vì 1/x là số dương )

Vậy x + 1/x >=2 (x>0)

22 tháng 4 2016

Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html

13 tháng 9 2019

Áp dụng BĐT Cauchy – Schwarz, ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{\left(a+b+c\right)^3}{b+c+a+c+a+b}\)

\(=\frac{\left(a+b+c\right)^3}{2\left(a+b+c\right)}=\frac{\left(a+b+c\right)^2}{2}\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)

15 tháng 9 2019

ミ★长 - ƔξŦ★彡vãi cả cauchy-schwarz cho bậc 3: \("\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{\left(a+b+c\right)^3}{b+c+c+a+a+b}\)

Thiết nghĩ nên sửa đề \(a,b,c>0\) thôi chứ là gì có d? Mà nếu a >b >c > d > 0 thì liệu dấu = có xảy ra?

Áp dụng BĐT Cauchy-Scwarz ta có: \(LHS\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)

NV
11 tháng 3 2019

Theo BĐT Holder ta có:

\(9\left(a^3+b^3+c^3\right)=\left(a^3+b^3+c^3\right)\left(1+1+1\right)\left(1+1+1\right)\ge\left(a.1.1+b.1.1+c.1.1\right)^3\)

\(\Rightarrow9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\Rightarrow a^3+b^3+c^3\ge\frac{\left(a+b+c\right)^3}{9}\)

\(\Rightarrow P=\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{\left(a+b+c\right)^3}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2}{9}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2}{9}.3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=\left(a+b+c\right)^2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

11 tháng 3 2019

C/m : \(a^3+b^3+c^3\ge\frac{\left(a+b+c\right)^3}{9}\)

Giả sử đpcm là đúng , ta có :

\(9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow9\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right).c^2+c^3\)

\(\Leftrightarrow9\left(a^3+b^3+c^3\right)\ge a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a^2+2ab+b^2\right).c+3ac^2+3bc^2\)

\(\Leftrightarrow8\left(a^3+b^3+c^3\right)\ge3ab\left(a+b\right)+\left(3a^2+6ab+3b^2\right).c+3ac^2+3bc^2\)

\(\Leftrightarrow8\left(a^3+b^3+c^3\right)\ge\left(3a^2c+3ac^2\right)+\left(3bc^2+3b^2c\right)+3ab\left(a+b\right)+6abc\)

\(\Leftrightarrow8\left(a^3+b^3+c^3\right)\ge3ac\left(a+c\right)+3bc\left(b+c\right)+3ab\left(a+b\right)+6abc\left(1\right)\)

Do a ; b ; c > 0 , áp dụng BĐT Cô - si , ta có :

\(a^3+b^3+c^3\ge3abc\Rightarrow2\left(a^3+b^3+c^3\right)\ge6abc\)

Từ ( 1 ) \(\Rightarrow6\left(a^3+b^3+c^3\right)\ge3ac\left(a+c\right)+3bc\left(b+c\right)+3ab\left(a+b\right)\left(3\right)\)

Áp dụng BĐT phụ \(x^3+y^3\ge xy\left(x+y\right)\) ( tự c/m ) , ta có :

\(3\left(a^3+c^3\right)\ge3ac\left(a+c\right)\) ; \(3\left(b^3+c^3\right)\ge3bc\left(b+c\right);3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\)

\(\Rightarrow6\left(a^2+b^2+c^2\right)\ge3ab\left(a+b\right)+3ac\left(a+c\right)+3bc\left(b+c\right)\left(4\right)\)

( luôn đúng )

Từ ( 3 ) ; ( 4 ) => Điều giả sử là đúng => đpcm

Áp dụng vào bài toán , ta có :

\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{\left(a+b+c\right)^3}{9}.\frac{9}{a+b+c}=\left(a+b+c\right)^2\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

7 tháng 2 2019

Do a , b ,c đối xứng , giả sử a \(\ge b\ge c\Rightarrow\left\{{}\begin{matrix}a^2\ge b^2\ge c^2\\\dfrac{a}{b+c}\ge\dfrac{b}{a+c}\ge\dfrac{c}{a+b}\end{matrix}\right.\)

Áp dụng BĐT Trê - bư -sép ta có :

\(a^2.\dfrac{a}{b+c}+b^2.\dfrac{b}{a+c}+c^2.\dfrac{c}{a+b}\ge\dfrac{a^2+b^2+c^2}{3}.\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right)=\dfrac{1}{3}.\dfrac{3}{2}=\dfrac{1}{2}\)Vậy \(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\ge\dfrac{1}{2}\) Dấu bằng xảy ra khi a = b =c = \(\dfrac{1}{\sqrt{3}}\)

2 tháng 9 2019

Cần sửa đề : cho \(a\ge b\ge c>0\).

Áp dụng BĐT Cauchy-Schwarz:

\(VT=\frac{a^4}{ab+ac}+\frac{b^4}{ab+bc}+\frac{c^4}{ca+bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{1}{2\cdot\left(a^2+b^2+c^2\right)}=\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)