Tìm x
|x+\(\frac{1}{2}\)| - 15\(\frac{1}{2}\)= \(-12\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-x-\frac{1}{4}\\ \Rightarrow x+\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-\frac{1}{4}\\ \Rightarrow x>\frac{2}{3}+\frac{4}{9}-\frac{1}{4}-\frac{1}{6}-\frac{4}{15}\\ \Rightarrow x>\left(\frac{6}{9}+\frac{4}{9}\right)-\left(\frac{15}{60}+\frac{10}{60}+\frac{16}{60}\right)\)
\(x>\frac{10}{9}-\frac{41}{60}\\ x>\frac{200-123}{180}\Rightarrow x>\frac{77}{180}\)
b) Bất đẳng thức kép
\(4-1\frac{1}{3}< x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
có nghĩa là ta phải có hai bất đẳng thức đồng thời:
\(x+\frac{1}{5}>4-1\frac{1}{3}\) và \(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
Ta tìm các giá trị của x cần thỏa mãn bất đẳng thức thứ nhất:
\(x+\frac{1}{5}>4-1\frac{1}{3}\Rightarrow x>4-1\frac{1}{3}-\frac{1}{5}\\ \Rightarrow x>\frac{37}{15}\)
Từ bất đẳng thức thứ hai
\(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\Rightarrow x< \frac{86}{7}-\frac{27}{8}-\frac{1}{5}\\ \Rightarrow x< \frac{2439}{280}.\)
Như vậy các số hữu tỉ x cần thỏa mãn:
\(\frac{37}{15}< x< \frac{2439}{280}\)
\(\frac{x+1}{12}+\frac{x+2}{13}=\frac{x+3}{14}+\frac{x+4}{15}\) .Trừ 1 ở mỗi hạng tử của 2 vế ,ta có :
\(\frac{x-11}{12}+\frac{x-11}{13}=\frac{x-11}{14}+\frac{x-11}{15}\Rightarrow\left(\frac{1}{12}+\frac{1}{13}\right)\left(x-11\right)=\left(\frac{1}{14}+\frac{1}{15}\right)\left(x-11\right)\)
\(\Rightarrow\left[\left(\frac{1}{12}+\frac{1}{13}\right)-\left(\frac{1}{14}+\frac{1}{15}\right)\right]\left(x-11\right)=0\)
\(\frac{1}{12}>\frac{1}{14};\frac{1}{13}>\frac{1}{15}\Rightarrow\frac{1}{12}+\frac{1}{13}>\frac{1}{14}+\frac{1}{15}\Rightarrow\left(\frac{1}{12}+\frac{1}{13}\right)-\left(\frac{1}{14}+\frac{1}{15}\right)\ne0\)
\(\Rightarrow x-11=0\Rightarrow x=11\)
\(\frac{x+1}{12}+\frac{x+2}{13}=\frac{x+3}{14}+\frac{x+4}{15}\)
\(\Leftrightarrow\frac{x+1}{12}-1+\frac{x+2}{13}-1=\frac{x+3}{14}-1+\frac{x+4}{15}-1\)
\(\Leftrightarrow\frac{x-11}{12}+\frac{x-11}{13}=\frac{x-11}{14}+\frac{x-11}{15}\)
\(\Leftrightarrow\frac{x-11}{12}+\frac{x-11}{13}-\frac{x-11}{14}-\frac{x-11}{15}=0\)
\(\Leftrightarrow\left(x-11\right)\left(\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}\right)=0\)
Mà: \(\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}\ne0\)
\(\Rightarrow x-11=0\Rightarrow x=11\)
mk sắp phải đi học rồi các bạn giúp mình với có đc ko mk nhớ sẽ đền đáp công ơn của bạn
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
a)\(-\frac{15}{12}x+\frac{3}{7}=\frac{6}{4}x-\frac{1}{2}\)
\(\Leftrightarrow\frac{15}{12}x+\frac{6}{4}x=\frac{1}{2}+\frac{3}{7}\)
\(\Leftrightarrow\frac{11}{4}x=\frac{9}{14}\Leftrightarrow x=\frac{36}{154}\)
b) \(\frac{2}{5}\left(x+1\right)-\frac{4}{5}x=0\)
\(\Leftrightarrow\frac{2}{5}x+\frac{2}{5}-\frac{4}{5}x=0\)
\(\Leftrightarrow-\frac{2}{5}x=-\frac{2}{5}\Leftrightarrow x=1\)
\(\left|x+\frac{1}{2}\right|-15\frac{1}{2}=-12\frac{3}{4}\)
\(\Leftrightarrow\left|x+\frac{1}{2}\right|-\frac{31}{2}=\frac{-51}{4}\)
\(\Leftrightarrow\left|x+\frac{1}{2}\right|=\frac{-51}{4}+\frac{31}{2}\)
\(\Leftrightarrow\left|x+\frac{1}{2}\right|=\frac{11}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{-11}{4}\\x+\frac{1}{2}=\frac{11}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-13}{4}\\x=\frac{9}{4}\end{cases}}\)