K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: x≥2

A=√x+2√2x−4+√x−2√2x−4

=√x−2+2.√x−2.√2+2+√x−2−2.√x−2.√2+2

=√(√x−2+√2)2+√(√x−2−√2)2

=|√x−2+√2|+|√x−2−√2|=√x−2+√2+|√x−2−√2|

Xét x≥4⇒√x−2≥√2

⇒A=√x−2+√2+√x−2−√2=2√x−2

Xét 0≤x<4⇒√x−2<√2

⇒A=√x−2+√2−√x−2+√2=2√2

1 tháng 7 2021

ĐKXĐ: \(x\ge2\)

\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{x-2}+\sqrt{2}\right|+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)

Xét \(x\ge4\Rightarrow\sqrt{x-2}\ge\sqrt{2}\)

\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)

Xét \(0\le x< 4\Rightarrow\sqrt{x-2}< \sqrt{2}\)

\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)

1 tháng 7 2021

Tại sao xét  x≥4 vậy bạn.

7 tháng 9 2023

a) \(3\sqrt{2x}-4\sqrt{2x}+8-2\sqrt{x}\)

\(=-\left(4\sqrt{2x}-3\sqrt{2x}\right)+8-2\sqrt{x}\)

\(=-\sqrt{2x}-2\sqrt{x}+8\) 

b) \(3\sqrt{2x}-\sqrt{72x}+3\sqrt{18x}+18\)

\(=3\sqrt{2x}-6\sqrt{2x}+3\cdot3\sqrt{2x}+18\)

\(=3\sqrt{2x}-6\sqrt{2x}+9\sqrt{2x}+18\)

\(=\left(3+9-6\right)\sqrt{2x}+18\)

\(=6\sqrt{2x}+18\)

4 tháng 7 2021

\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)

\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)

\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)

\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)

4 tháng 7 2021

B1.

Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)

            \(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

           \(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)

17 tháng 7 2015

ĐKXĐ: 

\(2x-4\ge0\)và \(x+2\sqrt{2x-4}\ge0\)và \(x-2\sqrt{2x-4}\ge0\)

<=>\(2x\ge4\)và \(x\ge2\sqrt{2x-4}\)

<=>\(x\ge2\text{ và }x^2\ge8x-16\)

<=>\(x\ge2\text{ và }\left(x-4\right)^2\ge0\)

=>\(x\ge2\)

\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

\(=\sqrt{x-2+2.\sqrt{2}\sqrt{x-2}+2}+\sqrt{x-2-2.\sqrt{2}\sqrt{x-2}+2}\)

\(=\sqrt{\left(\sqrt{x-2}+2\right)^2}=\sqrt{\left(\sqrt{x-2}-2\right)^2}\)

\(=\left|\sqrt{x-2}+2\right|+\left|\sqrt{x-2}-2\right|\)

Với \(\sqrt{x-2}-2>0\) thì \(A=\sqrt{x-2}+2+\sqrt{x-2}-2=2\sqrt{x-2}\)

Với \(\sqrt{x-2}-2

13 tháng 7 2018

Vì hai vế đều dương nên bình phương hai vế, ta được:

\(H^2=\left(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\right)^2\)

      \(=x+2\sqrt{2x-4}+x-2\sqrt{2x-4}+2\sqrt{\left(x+2\sqrt{2x-4}\right)\left(x-2\sqrt{2x-4}\right)}\)

        \(=2x+2\sqrt{x^2-4\left(2x-4\right)}=2x+2\sqrt{x^2-8x+16}\)

         =2x + 2√ (x-4)^2 = 2x + 2|x-4|

Đến đây bạn tự làm tiếp nha (với x>2)

18 tháng 5 2022

`[2x+\sqrt{2}]/[4x^2+4\sqrt{2}x+\sqrt{2}]`

`=[\sqrt{2}(\sqrt{2}x+1)]/[\sqrt{2}(2\sqrt{2}x^2+4x+1)]`

`=[\sqrt{2}x+1]/[2\sqrt{2}x^2+4x+1]`

18 tháng 5 2022

\(\dfrac{2x+\sqrt{2}}{4x^{2^{ }}4\sqrt{2}x^{2^{ }}+\sqrt{2}}\)

\(\dfrac{\sqrt{2}\left(\sqrt{2}x+1\right)}{\sqrt{2}\left(2\sqrt{2}x^2+4x+1\right)}\)

\(\dfrac{\sqrt{2}x+1}{2\sqrt{2}x^24x+1}\)

5 tháng 5 2016

nhân căn 2 vô rồi tạo hằng đẳng thức là ra

24 tháng 9 2021

1)\(=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{26^2}=\sqrt{5}-2+26=24-\sqrt{5}\)

2) \(=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)

3) \(=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)\(=\left[{}\begin{matrix}1\left(x>1\right)\\-1\left(x< 1\right)\end{matrix}\right.\)

4) \(=\sqrt{\left(\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{1}{2}}\right)^2}=\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}-\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}=2\sqrt{\dfrac{1}{2}}=\sqrt{2}\)

24 tháng 9 2021

2. \(\dfrac{x^2-5}{x+\sqrt{5}}=\dfrac{x^2-\left(\sqrt{5}\right)^2}{x+\sqrt{5}}=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)

3. \(\dfrac{\sqrt{x^2-2x+1}}{x-1}=\dfrac{\sqrt{x^2-2.x.1+1^2}}{x-1}=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{|x-1|}{x-1}=\left[{}\begin{matrix}x-1>0\left(x>1\right)\\x-1< 0\left(x< 1\right)\end{matrix}\right.=\left[{}\begin{matrix}=1\\=\dfrac{x+1}{x-1}\end{matrix}\right.\)