3\(\frac{1}{3}\)y= 25%y + 0,2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu diễn sai là: A) \(\frac{5}{12}=0,2\left(16\right)\)
Vì \(\frac{5}{12}=0,41\left(6\right).\)
Chúc bạn học tốt!
\(\frac{1}{3}\left|\frac{1}{4}x-\frac{1}{5}\right|+\frac{3}{7}\left|\frac{x}{y}-0,2\right|=0\)
Nhận xét : \(\left|\frac{1}{4}x-\frac{1}{5}\right|\ge0\)với \(\forall x\)(vì giá trị tuyệt đối không âm)
\(\Rightarrow\frac{1}{3}\left|\frac{1}{4}x-\frac{1}{5}\right|\ge0\)(1)
\(\left|\frac{x}{y}-0,2\right|\ge0\)với \(\forall x\),\(\left(y\ne0\right)\)(vì giá trị tuyệt đối không âm)
\(\Rightarrow\frac{3}{7}\left|\frac{x}{y}-0,2\right|\ge0\) (2)
Từ (1) và (2) => \(\frac{1}{3}\left|\frac{1}{4}x-\frac{1}{5}\right|+\frac{3}{7}\left|\frac{x}{y}-0,2\right|\ge0\)
Để \(\frac{1}{3}\left|\frac{1}{4}x-\frac{1}{5}\right|+\frac{3}{7}\left|\frac{x}{y}-0,2\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}\left|\frac{1}{4}x-\frac{1}{5}\right|=0\\\frac{3}{7}\left|\frac{x}{y}-0,2\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left|\frac{1}{4}x-\frac{1}{5}\right|=\frac{1}{3}\\\left|\frac{x}{y}-0,2\right|=\frac{3}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{4}x-\frac{1}{5}=0\\\frac{x}{y}-0,2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{4}x=\frac{1}{5}\\\frac{x}{y}=0,2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{4}{5}\\\frac{4}{5}\div y=0,2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{4}{5}\\y=4\left(tm\right)\end{cases}}\)
Vậy \(x=\frac{4}{5};y=4\) (Tm)
1/x + 1/y + 1/z = 1/x+y+z
<=> xy+yz+zx/xyz = 1/x+y+z
<=> (xy+yz+xz).(x+y+z)=xyz
<=> x^2y+xy^2+y^2z+z^2y+z^2x+x^2z+3xyz=xyz
<=> x^2y+y^2x+y^2z+z^2y+z^2x+x^2z+2xyz = 0
<=> (x+y).(y+z).(z+x) = 0
<=> x+y=0 hoặc y+z=0 hoặc x+z=0
<=> x=-y hoặc y=-z hoặc z=-x
Nếu x=-y => x^25 = -y^25 => P = 0
Nếu y=-z => y^3 = -z^3 => P = 0
Nếu z=-x => z^2006 = x^2006 => P = 0
Vậy P = 0
Tk mk nha
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)=1\)
\(\Leftrightarrow3xyz+yz\left(y+z\right)+xz\left(x+z\right)+xy\left(x+y\right)=xyz\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) hay B = 0
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\Rightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)
\(\Rightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)\(\Rightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\left(x+y\right)\left(\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)\(\Rightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)\(\Rightarrow\)\(x=-y\) hoặc \(y=-z\) hoặc \(z=-x\)
\(\Rightarrow A=0\)
Vậy \(\left(x;y;z\right)=\left(2;57;41\right).\)
Chúc bạn học tốt!
a)\(y+30\%y=-1,3\Rightarrow y+\frac{3}{10}y=-1,3\Rightarrow y\left(1+\frac{3}{10}\right)=-1,3\Rightarrow y\times1,3\)\(=-1,3\Rightarrow y=-1\)
b)\(y-25\%y=\frac{1}{2}\Rightarrow y-\frac{1}{4}y=\frac{1}{2}\Rightarrow y\left(1-\frac{1}{4}\right)=\frac{1}{2}\Rightarrow y\times\frac{3}{4}=\frac{1}{2}\Rightarrow y=\frac{1}{2}:\frac{3}{4}\Rightarrow y=\frac{2}{3}\)
c)\(3\frac{1}{3}y+16\frac{3}{4}=13,25\Rightarrow\frac{10}{3}y+\frac{67}{4}=\frac{53}{4}\Rightarrow\frac{10}{3}y=\frac{53}{4}-\frac{67}{4}\Rightarrow\frac{10}{3}y=\frac{-7}{2}\Rightarrow y=\frac{-21}{20}\)
2x^3-1 = 15
=> 2x^3 = 15+1 = 16
=> x^3 = 16:2 = 8 = 2^3
=> x = 2
=> y-25/16 = z+9/25 = 2+16/9 = 2
=> y = 57 ; z = 41
=> x+y+z = 2+57+41 = 100
Vậy x+y+z = 100
Tk mk nha
Ta có : 2x3 - 1 = 15 \(\Rightarrow\)2x3 = 16 \(\Rightarrow\)x3 = 8 = 23 \(\Rightarrow\)x = 2
Thay x = 2 vào các tỉ số trên, ta được :
\(\frac{2+16}{9}=\frac{y-25}{17}=\frac{z+9}{25}\)
hay \(\frac{y-25}{17}=\frac{z+9}{25}=2\)
\(\frac{y-25}{17}=2\Rightarrow y-25=34\Rightarrow y=59\)
\(\frac{z+9}{25}=2\Rightarrow z+9=50\Rightarrow z=41\)
Vậy x + y + z = 2 + 59 + 41 = 102