Chứng minh
B= 1/2+ 1/2² + 1/2³+...+ 1/2^20
/là phần nha ai nhanh mik tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để n + 4/n là số nguyên thì n + 4 chia hết cho n
=> 4 chia hết cho n
=> n thuộc {1; 2; 4}
Vậy...
b, Để n - 2/4 là số nguyên thì n - 2 chia hết cho 4
=> n - 2 = 4k (k thuộc N)
=> n = 4k + 2
Vậy n = 4k + 2 với n thuộc N
c, Để 6/n - 1 là số nguyên thì 6 chia hết cho n - 1
=> n - 1 thuộc {1; 2; 3; 6}
=> n thuộc {2; 3; 4; 7}
Vậy....
d, Để n/n - 2 là số nguyên thì n chia hết cho n - 2
=> n - 2 + 2 chia hết cho n - 2
=> 2 chia hết cho n - 2
=> n - 2 thuộc {1; 2}
=> n thuộc {3; 4}
Vậy...
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}\)
Mà 1-1/20 <1
Vậy A<1
1/51+1/52+1/53+....+1/100>1/100+1/100+1/100+...+1/100(50 so 0)=50/100=1/2
Áp dụng công thức \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\). Ta có:
\(\frac{1}{2^2}< 2-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
. . . . .
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)
_________________________________________________
\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2-\frac{1}{50}=\frac{99}{50}\)
Vậy:A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2^{\left(đpcm\right)}\)
ta thấy n , n+1 , n+2 là 3 số tự nhiên liên tiếp
->trong đó chắc chắn có 1 số chẵn hay có 1 số chia hết cho 2
->n.(n+1).(n+2) chia hết cho 2
lại có: trong 3 số tự nhiên liên tiếp phải có 1 số chia hết cho 3
->n.(n+1).(n+2) chia hết cho 3
tích đó chia hết cho 2 và 3 ->tích đó chia hết cho 2.3
->n(n+1)(n+2) chia hết cho 6
mình cũng không chắc nữa
chứng minh cái j
Chứng minh hay là tính?