Tìm x,y \(\frac{1}{x}+\frac{1}{y}=1\)thuộc N*.Biết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x;y;z có vai trò tương đương nên giả sử: \(0< x\le y\le z\)
Khi đó ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}\Rightarrow\frac{3}{x}\ge1\Rightarrow x\le3\). Do x;y;z thuộc N* nên:
Vậy có 3 bộ số thỏa mã đề bài là (2; 3; 6); (2 ; 4 ; 4) ; (3 ; 3 ; 3)
Đảo các bộ số này với x ; y; z ta có 10 nghiệm của PT.
c1:
Ta có :\(\frac{1}{x}+\frac{1}{y}=1\Rightarrow x+y=xy\Rightarrow xy-x-y=1\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=1\Rightarrow\left(x-1\right)\left(y-1\right)=1\)
Mà \(x,y\inℕ^∗\Rightarrow x-1,y-1\inℕ\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy x=y=1
Hoàng Nguyễn Văn làm sai rồi thay x,y vào xem thử
\(\frac{1}{1}+\frac{1}{1}=1+1=2\)