K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

x2 - 4x + 10 < 0

<=> (x - 2)2 + 6 < 0

<=> (x - 2)2 < -6

=> Vô lý

4 tháng 7 2015

biết ngay đằng nào cũng thế

4 tháng 7 2015

-x2+4x-5<0

-x2+4x-4-1<0

<=>-(x-2)2<1

<=>(x-2)2>-1

Do (x-2)2>0

=>(x-2)2>-1 luôn luôn đúng

Vậy BPT thoã mãn với mọi x

4 tháng 3 2016

f(x)g(x)=0<=>f(x)=0 hoặc g(x)=0

ta xét Th (x^3-4x^2-2x-15)/(x^2+x+1)=0

\(\Leftrightarrow\frac{x^3-4x^2-2x-15}{x^2+x+1}=\frac{\left(x-5\right)\left(x^2+x+3\right)}{x^2+x+1}\Rightarrow x=5\)

x2+x+3=0

12-4(1.3=-11

=>pt ko có nghiệm thực

=>x=5 vì (x^3-4x^2-2x-15)/(x^2+x+1)<0

=>\(x\in\left\{-\infty;5\right\}\)

9 tháng 12 2015

\(\Leftrightarrow x^4+16x^2+100+8x^3+80x+20x^2-7x^2-28x-77+7<0\)

\(x^4+8x^3+29x^2+52x+30<0\)

tự làm tiếp nha

15 tháng 6 2020

Đặt: \(x^2+4x+10=t\)

Ta có bất phương trình: 

\(t^2-7\left(t+1\right)+7< 0\)

<=> \(t^2-7t< 0\)

<=> \(t\left(t-7\right)< 0\)

TH1: \(\hept{\begin{cases}t< 0\\t-7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}t< 0\\t>7\end{cases}}\)vô lí

Th2: \(\hept{\begin{cases}t>0\\t-7< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}t>0\\t< 7\end{cases}}\Leftrightarrow0< t< 7\)

Với 0 < t < 7 ta có: 

\(0< x^2+4x+10< 7\)

<=> \(0< \left(x+2\right)^2+6< 7\)

<=> \(\left(x+2\right)^2< 1\)

<=> \(-1< x+2< 1\)

<=> - 3 < x < -1

Kết luận:...