Chứng minh rằng:
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(S=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
50 mũ 2 nhé
Chứng minh rằng S<\(\frac{3}{4}\)
\(S=\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+..+\frac{1}{50^2}\right)\)
Xét \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
\(A< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A< \frac{1}{2}-\frac{1}{50}< \frac{1}{2}\)
\(=>A< \frac{1}{2}\)
=>\(S=\frac{1}{4}+A< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)
vậy S<3/4
TA CÓ Vế trái <\(\frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
do đó VT <2(dpcm)
đặt B=1/2.3+1/3.4+...+1/49.50
=1/1.2+1/2.3+1/3.4+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/50.50<1-1/2+1/2-1/3+...+1/49-1/50 (3)
từ (1),(2),(3) =>A<2
Ta có : \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{50^2}=1+\frac{1}{2^2}+........+\frac{1}{50^2}\)
=> \(A<1+\frac{1}{1.2}+\frac{1}{2.3}+.............+\frac{1}{49.50}\)
=> \(A<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{49}-\frac{1}{50}\)
=> \(A<2-\frac{1}{50}\Rightarrow A<2\)
Vậy A nhỏ hơn 2
Bạn xem lời giải ở đường link sau nhé:
Câu hỏi của nguyenducminh - Toán lớp 6 - Học toán với OnlineMath
A=\(\frac{1}{1^2}\)\(+\frac{1}{2^2}\)\(+\frac{1}{3^2}\)\(+...+\frac{1}{50^2}\)
A<1\(+\frac{1}{1.2}\)\(+\frac{1}{2.3}\)\(+...\frac{1}{49.50}\)
=1+1-\(-\frac{1}{2}\)\(+\frac{1}{2}\)\(-\frac{1}{3}\)\(+...+\frac{1}{49}\)\(-\frac{1}{50}\)
=\(1+1-\frac{1}{50}\)
=\(2-\frac{1}{50}\)\(< 2\)
\(\Rightarrow A< 2\)
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)
\(\Rightarrow2S=1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\)
\(\Rightarrow2S-S=\left(1+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)
\(S=1-\frac{2}{2^{20}}\)
\(\Rightarrow S< 1\left(đpcm\right)\)
Ta có :\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)
\(S=\frac{1\cdot2^{19}}{2\cdot2^{19}}+\frac{1\cdot2^{18}}{2^2\cdot2^{18}}+\frac{1\cdot2^{17}}{2^3\cdot2^{17}}+...+\frac{1\cdot2}{2^{19}\cdot2}+\frac{1}{2^{20}}\)
\(S=\frac{2^{19}}{2^{20}}+\frac{2^{18}}{2^{20}}+\frac{2^{17}}{2^{20}}+...+\frac{2}{2^{20}}+\frac{1}{2^{20}}\)
\(S=\frac{2^{19}+2^{18}+2^{17}+...+2^1+1}{2^{20}}\)
\(S=\frac{2^0+2^1+2^2+...+2^{19}}{2^{20}}\)
Xét: Gọi \(N=2^0+2^1+2^2+...+2^{19}\)
\(2\cdot N=2^1\cdot2^2\cdot2^3\cdot...\cdot2^{20}\)
\(2\cdot N-N=\left(2^1+2^2+2^3+...+2^{20}\right)-\left(2^0+2^1+2^2+...+2^{19}\right)\)
\(N=2^{20}-2^0\)
Thay N vào S, ta có :
\(S=\frac{2^{20}-2^0}{2^{20}}\)
\(S=\frac{2^{20}}{2^{20}}-\frac{1}{2^{20}}\)
\(S=1-\frac{1}{2^{20}}\)
Vì \(1-\frac{1}{2^{20}}< 1\Rightarrow S< 1\left(Đpcm\right).\)
Vậy : \(S< 1.\)
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(\Rightarrow S< 1+\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...\frac{1}{49\cdot50}\right)\)
\(S< 1+\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(S< 1+\left(1-\frac{1}{50}\right)\)
Mà \(1-\frac{1}{50}< 1\Rightarrow1+\left(1-\frac{1}{50}\right)< 2\)( ĐPCM )